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Abstract-The asymmetric-unbalanced count&low thermal regenerator problem described by the classical 
idealizations is solved by the Galerkin method. The integral equations relating to the reversal conditions 
at cyclic equilibrium of the regenerator matrix are transformed into a set of algebraic equations. This 
permits the determination of the expansion coefficients associated with the representation of the matrix 
temperature distributions at the start of each period of the cycle in the form of a power series in terms of 
the space variable. The method is easy and straightforward to apply and leads to explicit analytical 
expressions for the expansion coefficients for any combination of the four dimensionless parameters of the 
asymmetric-unbalanced regenerator. Excellent agreement has been found between the results of this new 
solution and those reported in the literature for different numerical solutions. Convergence towards the 
exact results by computations to higher order terms is discussed. The solution has been used to predict the 
effectiveness of a wide range of the four dimensionless parameters. Thermodynamic reasons for an alter- 
native but rational and meaningful way of defining the four regenerator parameters are presented. 

INTRODUCTION 

IT WAS in 1972 when Hausen [ 11, surveying the theories 
of heat transfer in regenerators, wrote : 

‘1 . as far as I know, the question to what degree all 
these methods connected with the integral equation 
are suitable to practical problems, is not yet 
answered sufficiently . . .” 

It is the intention of this paper to contribute to answer- 
ing Hausen’s question. 

The simplest mathematical representation of fixed 
bed cyclic thermal regenerators has remained virtually 
static since the initial publication of Nusselt [2], and 
likewise, the rotary matrix exchanger has also stayed 
in the same state since the original work of Coppage 
and London [3]. In both systems, the sole mechanism 
of heat transfer between the flowing gases and the 
regenerator matrix is assumed to be forced convec- 
tion, and this results in two coupled first-order partial 
differential equations describing the energy transfer 
in each of two periods of operation. Despite the 
simplicity of the differential equations under classical 
assumptions, their solution has proved to be chal- 
lenging, and performances of counterflow regenerator 
have been widely investigated numerically as well as 
analytically. The state-of-the-art and survey texts on 
this subject appeared in the books by Hausen [4] and 
Schmidt and Willmott [5], and the work of Razelos [6]. 
Available closed methods for solving the counter-flow 
regenerator problem are mainly related to the govern- 
ing differential equations. The method of lines was 

used by Hill and Willmott [7] in order to reduce the 
counterflow regenerator problem to a set of ordinary 
differential equations in time. Their approach uses the 
trapezoidal rule to discretize one of the governing 
partial differential equations, and is related to the 
method proposed by Razelos [8]. Recently the com- 
putation speed of this method has been improved by 
Hill and Willmot [9]. However, all these methods 
avoid the use of the integral equations. As stated at 
the beginning, this paper is a presentation of the 
method for solving the counterflow regenerator prob- 
lem formulated by the integral equations. It over- 
comes the difficulties of the method of Iliffe [lo] and 
Nahavandi and Weinstein [1 11, both used for solving 
the integral equations, by looking for a solution in a 
class of special functions that identically satisfy the 
governing differential equations. 

For design purposes a regenerator is usally con- 
sidered to have attained cyclic equilibrium, i.e. the 
fluids and matrix temperature distributions are 
repeated in successive cycles. The solution of the 
governing differential equations is presented in terms 
of the regenerator effectiveness as a function of per- 
tinent dimensionless groups. The specific form of these 
dimensionless groups is to some extent optional, and 
the two most common forms are : the number of trans- 
fer unitscapacity rate ratio method (generally used 
for rotary regenerators) whereby 

a = a(Nt”,O, c*, Cl, @A)*) (1) 

and the reduced length-reduced period method (gen- 
erally used for fixed-matrix regenerators) in which 
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NOMENCLATURE 

matrix to gas heat transfer area [m’] 
constants defined by equation (87) 
expansion coefficients in trial solution, 
equation (65) 
expansion coefficients in trial solution, 
equation (66) 
constants defined by equation (88) 
unbalance factor, ,& [dimensionless] 
constants defined by equation (85) 
reciprocal of minimal utilization factor, 
l/U, [dimensionless] 
specific heat of gas at constant pressure 
[J kg- ’ K- ‘1 
specific heat of solid matrix 
[J kg-’ K-‘] 
matrix temperature distribution at the 
start of period 1 [dimensionless] 
matrix temperature distribution at the 
start of period 2 [dimensionless] 

F;(y, z) special function defined by equation 

(37) 
G,(y, z) special function defined by equation 

(38) 
I”(.) modified Bessel function of nth 

(integer) order 
i, j, k, I, m, n integers (counters) 
L regenerator length in the flow direction 

[ml 
L, {IF ,, F,) integral equation operator, 

defined by equation (63) 
IL,jF,, [F,} integral equation operator, 

Re (4 
s 

T 

t 

u 

defined by equation (64) 
Laplace transfo~ operator 
order of the trial solution 
gas mass flow rate [kg s- ‘1 
total mass of solid matrix [kg] 
modified number of transfer units, 
A ,/(l + a@) [dimensionless] 
duration of gas flow period [s] 
Laplace transform variable (II +p) 
actual quantity of heat being 
transferred in the regenerator [J] 
maximal quantity of heat that can be 
transferred in the regenerator, 
defined by equation (26) [J] 
residuals of the integral equations, 
defined by equations (79) and (80) 
real part of complex variable s 
Laplace transform variable (5 -+ s) 
temperature [K] 
time variable [s] 
utilization factor, 
II/A = (nic,P)/(M&) 
[dimensionless] 

24 dummy variable 
&(y, z) special functions defined by ~uation 

(35) 
V,,,(y, z) special functions defined by 

equation (36) 
1’ dummy variable 
x coordinate along the fluid 1 flow 

direction [m] 

Y dummy variable 
z dummy variable. 

Greek symbols 
gas to matrix heat transfer coefficient 
wm-2K-1] 
reduced period ratio, I7 ,/T12 = C$ 
[dimensionless] 
unbalance factor, 

u,/uz = (~c,P),/(n;lc,P), 
[dimensionless] 
regenerator effectiveness, defined by 
equation (27) [dimensionless] 
complementary spatial coordinate, 
1 - 5 [dimensionless] 
dimensionless time variable, t/P 
[dimensionless] 
dimensioniess temperature, 

(IT- r2,in>/(T~,in- T2,in) 

[dimensionless] 
reduced length for a regenerator, 
aA/(&c,) [dimensionless] 
dimensionless spatial coordinate, x/L 

[dimensionless] 
reduced period for a regenerator, 
aAP/(M,c,) [dimensionless] 
asymmetry factor, A ,/A, 
[dimensionless]. 

Subscripts 
c cold 
h hot 
in inlet 
m matrix 
out outlet 
sl solid in period 1 
s2 solid in period 2 
1 smaller U 
2 larger U. 

Superscripts 
approximation 
Laplace transform. 



Asymmetric-unbalan~d counterflow thermal regenerator problem : solution by the Gale&in method 485 

82 = aI7 AC, nl, I-0 (2) 

These two representations are equivalent as was 
shown by Shah [12], while Heggs [13] detailed the 
rotary system parameters in terms of fixed bed ones. 
The compilation of the relationships between the 
dimensionless groups of the two methods is given by 
Shah [14]. This one-to-one correspondence between 
the two methodologies allows the results obtained 
either in the form of equation (1) or (2) to be used for 
both types of regenerators. 

The problem of establishing the E = E(&, A,, II,,, 

XI,) relationship is in fact that of evaluating the actual 
heat transfer rate at cyclic equilibrium. Since no 
closed-form solutions of the mathematical model of 
counterflow thermal regenerator problem are avail- 
able, and since four different dimensionless groups are 
the parameters of any solution, all previous attempts 
to solve the problem, either numerically or analyti- 
cally, have been predestined to a rather limiting range 
of parameters. Evidently there is a need for: (i) a 
reliable and readily applicable method for solving the 
counterflow regenerator problem in a wide range of 
all governing parameters, and (ii) a rational way of 
presenting the results. 

Recently it was demonstrated that the Galerkin 
method yields a solution that predicts very accurately 
the regenerator effectiveness of symmetric-balanced 
systems with 1 6 A < 2000 and 0 < II < 4000 [15]. 
This paper is intended as a proof that the adoption of 
the Galerkin method for solving the general counter- 
flow regenerator problem is a sufficient step in sup- 
plementing the first of the above needs. The asym- 
metric-unbalanced regenerator problem was first 
attacked via the Galerkin method [16]. Latterly it has 
been shown that the Successive Integral Method when 
applied to the same problem, but with no reference to 
the integral equations, is equivalent to the Galerkin 
method [17]. The presentation of the complete set of 
results for the range of four regenerator parameters 
of practical interest is given in ref. [18]. Here, only the 
sample results for a randomly selected set of four 
regenerator parameters are presented together with 
the thermodynamic reasons for an alternative but 
rational way of defining the regenerator parameters, 

THE DIFFERENTIAL EQUATIONS 

AND REGENERATOR PARAMETERS 

The classical thermal regenerator model ft, 23 is 
based on the following idealizations : 

(a) total thermal capacitance of the solid regen- 
erator matrix is constant; 

(b) heat capacity rates of both fluids are constant ; 
(c) thermal conductances for convective transfer 

between the fluid and matrix are uniform and con- 
stant ; 

(d) transit times required for a gas particle to flow 
through the regenerator are negligibly small compared 
to the gas flow periods ; 

(e) solid matrix material offers no resistance to heat 
flow in the direction normal to fluid flow ; 

(f) no heat is conducted axially. 

Based on these assumptions, an energy balance pro- 
vides two equations applicable during the hot gas flow 
period 

1 ar, 1 aT, --=_--=i 
4, at n aq 

Tm-TI, (3) 

and two equations during the cold gas flow period 

The regenerator can operate with either uni- 
directional (plus sign in equation (4)) or counterflow 
of streams (minus sign in equation (4)). Since the 
mathematical model for the unidirectional operation 
mode has been solved by exact analytical procedures 
[ 191, only the countertlow regenerator problem will be 
discussed in this paper. 

In equations (3) and (4) r is the fractional distance 
along the flow path in the regenerator matrix of 
length L, and q is the fractional completion of a 
respective gas flow period. Temperatures of the hotter 
gas, of the colder gas and of the solid matrix are 
denoted by T,,, T, and T,,,, respectively. The four 
parameters Ai,, AC (reduced lengths), II,, and II, 
(reduced periods) are defined in the Nomenclature. 

Differential equations (3) and (4) describe the 
regenerator operation when the appropriate bound- 
ary conditions are specified. These are constant gas 
inlet temperature T,,," and Tc,in at the opposite ends 
(l = 0 and 1) of the regenerator matrix, and the con- 
dition stating that the matrix temperature field at the 
end of one gas flow period is the initial matrix tem- 
perature distribution for the subsequent gas flow 
period. 

In this paper the mathematical model of the counter- 
flow thermal regenerator is considered in dimen- 
sionless form in the space and time domain as 
shown in Fig. 1. As seen from Fig. 1 the space 
domain 0 < { = x/L < 1 is unique for both periods, 
while the time domains 0 < q, = t/P, ,< 1 and 0 6 
n2 = t/P2 < 1 are separate for each period. The 
gas flows, i.e. the flow periods, are not distinguished 
by the attributes ‘hotter’ or ‘colder’, but by ‘weaker’ 
and ‘stronger’. The subscript 1 is assigned to the 
weaker gas flow period such that the respective 
U, = (II/A), ratio is the smaller of the two ratios : 
U,, = (II/A), and UC = (H/A>,. The use of the II/A 
ratio as a regenerator parameter instead of reduced 
period H was first suggested by Johnson [20] who 
termed it the ‘utilization factor’. The main advantage 
of using 

Vi, = (II/A),, and UC = (H/A)C (5) 

is the fact that these parameters do not contain the 
fluid to matrix heat transfer coefficients of the respec- 
tive flow periods. Thus, defining 
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STRONGER PERIOD (U2 = U,/B = max(UhvUc)) 

1 
aes2(t;.~,) 1 ae,(ciq 

U, an2 -iT 35 = O 

0,,(5.0) = ~,,(5.~) 
7 

WEAKER PERIOD (U1 = min(U,,,Uc~) 

F=O E;=l 

FIG. 1. Space (0 < < < 1) and time (0 < q,, t/2 < 1) domain of a counterflow regenerator in cyclic 
equilibrium. 

U, = min ( U, , UC) (6) 

the matrix and fluid enthalpy balance for the weaker 
period can be written in dimensionless form as 

in 0 < TV, < 1 and 0 < 5 < I. The physical meaning of 
U, can be seen from 

mean matrix temperature change 
= ._._ 

mean gas temperature change I 

in the weaker period (8) 

where the gas 1 outlet temperature (see Fig. 1) is 

From equation (8) it is clear what is meant by 
terming ZJ the utilization factor. The word stands for 
utilizing the regenerator matrix as an intermediator in 

transferring heat from one to the other gas. The goal 
is not to make a large mean matrix temperature 
change in this process, and obviously for a favorable 
regenerator operation U, should not be greater than 
unity, but on the contrary much less than unity. 

The utilization factor in the stronger period, where 
subscript 2 is assigned to all quantities, is 

UZ = max {U,, UC) (10) 

and the matrix and fluid enthaipy balance equation 
for counterflow operation of a regenerator is 

in 0 < q2 < 1 and 0 < 5 < 1, where 

B = U,jU, < 1 (12) 

is introduced to eliminate U,. Schmidt and Willmott 
f5] termed 8 the unbalance factor. The main advan- 
tage of using the unbalance factor is the overall 
enthalpy balance for the regenerator can be written in 
the form equivalent to any two-fluid heat exchanger 

B L0”I = B(1 -@Lo”,) (13) 

where the outlet fluid temperatures are for the regen- 
erator given by equation (9) and 
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The physical meaning of the unbalance factor can 
be seen from 

total gas temperature change in the stronger period 

= total gas temperature change in the weaker period . 

(15) 

Hence, as for any two-fluid heat exchanger, the higher 
the unbalance (/l CC 1) the better the regenerator per- 
formance (higher effectiveness). 

As shown in Fig. 1 the heat transfer equation for 
the weaker period 

introduces the reduced length A, (dimensionless heat 
transfer coefficient) as the third regenerator par- 
ameter. Its physical meaning is 

T, .in - T,,out 

[T, (x, t) - T,, (x, 01 dx dt 

total gas temperature change 

= average transfer potential 

in the weaker period (17) 

so that it plays a role of the Stanton number for the 
regenerator. Thermodynamically speaking it is desir- 
able to produce a given gas temperature change at as 
low as possible average transfer potential. This would 
be a more reversible heat transfer process in the sense 
of lower entropy production. Thus, for a thermo- 
dynamically favorable operation of a regenerator it is 
desirable to have high values of A,. 

Finally, the fourth differential equation, describing 
heat transfer in the stronger period (see Fig. 1) 

ae2m2) A, - 
x + ~[e2(5~~2)-e~2(5,~2)i = 0 (18) 

introduces the fourth dimensionless parameter 

a = A,/A2 (19) 

the asymmetry factor. It is the ratio of relative average 
transfer potentials in the stronger and weaker period : 

1 -40ut 

[Tsz(x, 0 - T,(x, 01 dx dt 

T z,out - Tz,in = 
1 l-p, l-L 
I 

-J J LP, 0 
D-,(x, O- T,,(x, 01 dx dt 

0 

average transfer potential 

total gas temperature change 

= 
in the stronger period 

average transfer potential 

total gas temperature change 1 

in the weaker period 

(20) 

As stated above A, should be as high as possible 
for the favorable regenerator operation. Then, from 
the definition of a, A, should be at least of the same 
order of magnitude or higher. Thermodynamics, thus, 
imposes the study of a < 1 for properly designed 
regenerators. 

Differential equations (7), (1 l), (16) and (18) to- 
gether with the following boundary conditions : 

wo,d = 1 (21) 

e2uv h) = 0 (22) 

4,(m) = ~s2m72 = 11 (23) 

e,,(5,0) = e,,(5,q, = 1) (24) 

describe the operation of a counterflow thermal regen- 
erator as a function of four parameters : U,, A ,, b and 
a. The classical parameters discussed in the intro- 
duction are readily established from the following set 
of relations: II, = V,A,, II2 = V,A,//Ia, Nt,,O= 
A,/(1 +a/?), C* = B, C,* = l/V,, (aA)* = afl. 

The main advantage of introducing these four inde- 
pendent dimensionless parameters (V,, A,, /I and a) 
of the regenerator operation is that one can easily 
identify the physical meaning of some special cases 
corresponding to the limiting values of these par- 
ameters. One can deduce the following operating con- 
ditions : 

(1) U, --, 0 corresponds to the aperiodic (or ‘re- 
cuperative’) operation of a regenerator. The case when 
the matrix temperature distribution is time inde- 
pendent and is the same in both periods. Fluid tem- 
peratures are in the steady state as well. 

(2) U, --t cc means no process at all and the ex- 
changer ceases to exist. This case is not to be con- 
sidered. 

(3) A, + 0 corresponds to ‘short’ regenerators-a 
case with no heat transfer at all-not of practical 
interest. 

(4) A, -+ cc corresponds to ‘long’ regenerators-a 
case with vanishing transfer potential in both periods. 

(5) /I + &a completely unbalanced exchanger. 
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The case with no temperature change throughout 
the stronger period for any value of CJ. Thermo- 
dynamically the best operation for given U, and A,. 

(6) /I -+ l-a balanced regenerator. Each stream 
undergoes exactly the same overall temperature 
change. 

(7) e + &a completely asymmetric regenerator. 
The case when there is no transfer potential in the 
stronger period. This case together with U, + 0 and 
A, -+ co yields the highest effectiveness for any given 
unbalance factor /I. 

(8) ~7 + l-symmetric regenerator. 
(9) e + cc designates a disappearance of the 

stronger period implying that there is no process at 
all. This case should not be considered. Actually, even 
the case with B > 1 should not be studied since the 
regenerator performance deteriorates with increasing 
values of c. 

Real interest is limited to just six of the above 
specialcases(U,+O;A,+co;/?+O;fi+l;o-+O 
and CJ -+ 1) and they must be studied separately. This 
paper addresses the general unbalanced and asym- 
metric case, i.e. 1 > p > 0 and 1 > cr > 0. 

REGENERATOR EFFECTIVENESS 

The effectiveness of any two-fluid heat exchanger 
essentially is a dimensionless and normalized measure 
of the quantity of heat actually being transferred 
between the two streams. The normalization requires 
the recognition of the maximum possible fluid 
enthalpy change in the system. This hypothetical 
quantity of heat (emaX) can be seen as the enthalpy 
change of the weak stream undergoing the maximum 
possible temperature change (Th,i”- TC,l,). A ‘weak 
stream’, or more precisely a ‘weaker period’ of a regen- 
erator is the one with the smaller of the two possible 
heat capacities, (&c$‘), and (&c,P),. Thus, the attri- 
bution of ‘min’ should be given to the period for which 
the relation 

(n;ic,P),,, = min [(tic+X), , (kf+%l (25) 

holds, so that 

Qmax = Cn;iC,f%nin(Ttvn - Tc.m). (26) 

The regenerator effectiveness is then simply defined 
as 

a = QactlQmax (27) 

and it is a unique measure of its thermal performance. 
By the uniqueness here it is meant that the same E 

should be obtained by writing QsC, either in terms 
of hot period parameters or in terms of cold period 
parameters. This was demonstrated [21] for a model 
of the diabatic regenerator, and the results given there 
reduce, for the adiabatic model under consideration, to 

In order to rewrite these equations in terms of the 
regenerator parameters used in this paper (utilization 
factors U, = (II/A),,, and UZ = (II/A),_, and the 
appropriate dimensionless temperatures) divide both 
the denominators and numerators by the matrix total 
heat capacity M,c,, and assign correspondingly the 
subscripts 1 and 2. This will yield 

T I.,” - T,,,,, 
E = T,,,, - TX,, 

= I--~I,,“, (29) 

or 

U, Tzout - T,,,, le E = u, T,,,, - T,,,, = /3 2z=ut (30) 

where 0 I,out is the mean outlet gas temperature evalu- 
ated, using equation (9), from the gas outlet tem- 
perature distribution 6, (1, q ,) in the weaker period. 
Similarly 62,0Ul is the mean outlet gas temperature 
evaluated, using equation (14), from the gas outlet 
temperature distribution 13*(0, ~IJ in the stronger 

period. 61,0ut and 6l,out are the results of the solution 
of the mathematical model and will, thus, depend on 
four regenerator parameters. This will yield a relation- 
ship 

s = s(IJ,,A,,IJ,e) (31) 

which can be expressed also in terms of the classical 
parameters as in equation (1) or (2). 

Having the complete solution to the problem one 
can evaluate the regenerator effectiveness from any of 
the two equations (29) and (30), but it should be 
emphasized that there are three more equivalent 
expressions. These arise from alternative ways of 
expressing QX, , and are as follows. 

From the average driving force (transfer potential) 
in the weaker period 

I I 
E = A, 

ss 
Ie,(5,1,)-s,,(5,?,)1d5drl,. (32) 

0 0 

From the average driving force (transfer potential) 
in the stronger period 

From the energy accumulated in the matrix during 
one period 

s=+ 
s 

‘KWrli = 1)-&,(Lv, = l)ld5. (34) 
1 0 

As stated above E can be computed from any of 
the alternative formulae, but it appears that, for the 
method presented in this paper, equation (34) is the 
most convenient. 

FUNCTION USED FOR THE SOLUTION 

For a concise notation a class of special functions 
of two variables is extensively used throughout this 
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paper. These are defined by the following Laplace Easy ways to compute these functions are described 
transform pairs : in refs. [15,23]. 

INTEGRAL EQUATIONS 

The formal solution to the equations of the weaker 
period, equations (7) and (16), with the inlet fluid 
tem~rature given by equation (21) and ~rbifrury 
initial matrix temperature distribution 

Y_, 
p-2 

4,(LO) = F,(5) (50) 

= exp (-y-z)(zl~~>“- ‘“‘I{- g (&/(yz)) (36) is given by 

fori= 1,2,3 ,..., y,z > 0. The notation V, and I’i,o is 
due to Serov and Korol’kov [22], but these functions 
are also related to the families of functions Fj(y, z) and 
G,(y, z) introduced by Romie [23]. Note that Romie’s 
[23] functions are 

l;;(Y, z, = yi+ t (33 z> (37) 

[ 

i+ i 

Gi(y, z) = (- I)‘+ ’ ~l,o(Yvz)+ c (-l)“v,(Y,Z) 
n=l 1 

(38) 

fori=0,1,2 ,..., and 

F- 10, z) = V,.O(Y, 2) (39) 
At the end of gas flow in this period, when rl, = 1, 

the matrix is left at the temperature distribution 

G- t (Y, 4 = V,,O(Y, 4. (‘@) fLt5t 1) = f”,(A,t, U,A,) 
Some of the properties of Vi and V,,o functions that 

are of importance in this paper are 
-v,,o(A,5,v,A,)+F,(5)exp(-U,A,) 

f 
V2(y,0) = exp C-Y), V,tO,z) = I (41) +A, 

I 
~,Mi’,.o[~,(t-u), U,A,ldu. (53) 

0 
i- I 

vi/i(Y~ 0) = O, vi(O9 2) = ciT_ I)! 7 In a similar way the solution (again formal) to the 
governing equations for the stronger period, equa- 

i = 2,3,4,. . . (42) tions (11) and (18). rewritten for convenience with the 

$py~P~~2,0(~,z)~ = exp [-YP/(P+W-~~P t-y) 
downstream coordinate i = 1 - 5, i.e. 

(43) 

I- y, (y, z> = VI c&Y) - Y,,o(Y, z) 

ae2(*Tqz) + \‘[Q (i q )-@ ([ Vi )] = 0 
(q ai c7 z ’ 2 s2 ’ 2 (54) 

~l,O(Y,Z) = ~l,O(Z,Y) 
_. 

(45) 1 f3~,2(Lk?) 1 a@*(59 y/J 
_-+jai-_=o 

u, @2 
(55) 

V*,o(Y, 4 = i ~2,dw). (46) in 0 < [ < 1 and 0 < r,r2 < 1, with inlet fluid tem- 

For n = 0, 1,2,. . , the following integrals hold : 
perature (see equation (22)) 

I . 
; ; ~w(Y-~>z) d5 = G&s) 

WA 12) = 0 (54) 

(47) and arbitrary initial matrix temperature distribution 

(57) 

(49) and 
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At the end of gas flow in the stronger period, when 
ylz = 1, the regenerator matrix is left with the tem- 
perature field 

f&(i, I) = F&j exp 

(60) 
Probably the simplest way to prove that the solution 

given by equations (51) and (52) satisfies equations 
(7), (IQ, (21) and (50), as well as that equations (58) 
and (59) satisfy equations (54)-(57), is to refer prop- 
erly to the fundamental properties of the Laplace 
transformation with respect to dimensionless time 
variables 4, and ~jl* taking into account the trans- 
form pairs given by equations (35) and (36). 

Consider the approximation of the unknown func- 
tions tFI( l) and IF z(c) in the form of the same order 
(M) polynomiaIs in space variables 5 
tively, namely let the trial solutions be 

and 5, respec- 

(65) 

(66) 

It has been stressed that the above solutions are 
formal and valid for arbitrary given functions IF I( 0 
and ff 2( 0. When applied to the cyclic operation of the 
regenerator the reversal conditions will impose the 
constraints on 5,( 5) and IF,([) but the solution will 
remain formal until these two temperature fields are 
explicitly determined. Let us be more specific. The 
periodic equilibrium conditions for the regenerator 
matrix state that the spatial temperature distribution 
at the end of one period should coincide with that at 
the ~ginning of the other period, i.e. 

where nln, and a.,,, are the unknown expansion co- 
effictents which are yet to be determined. Next sup- 
pose that these coefficients are known (they will be 
determined by the Galerkin method in the next 
section). Then, upon substitution of equations (65) 
and (66) into equations (51) and (52) one can obtain 
approximations for fluid and solid temperature fields, 

@,(&v,) and @,,(5,tlI), as 

and 

&(5* 1) = F,(l--5). (62) 

When these conditions are combined with equa- 
tions (53) and (60) one is left with two integral equa- 
tions for ff, and IF2 

-~,(e)exp(-U,A,)-l+V*(Ci‘,h,,A,5)=0 

(63) 

Note that the last two terms in equation (63) are the 
consequence of property (44). 

The structure of these integral equations have made 
futile all the attempts to obtain IF, and IF, in a form 
suitable for explicit analytical evaluation of the regen- 
erator performances. That is the main reason why any 
solution of the form presented above remains formal 
unless we are able to find even approximately, F , (5) 
and lF,([) in a closed form. The aim of this paper is 
to reveal that very reliable results are obtainable by 
solving the integral equations (63) and (64) approxi- 
mately by the Galerkin method that utilizes a power 
series expansion as a trial solution for [F, (5) and [F,(i). 

TRfAL SOLUTION 

and 

&(;r,?i) = l-~~(U,A,~,,A~~) 

+ i -;; ~~~+,(~,A,~,,A,~). (68) 
m=O I 

Here again property (44) has been used for the first 
two terms. 

To verify equation (67) one has first to note that 
the integral term in equation (51) can be written as 

= A, s ’ iF,(u)V,,olU,A,?,,A,(e-u)ldu (49) 
” 
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since the V,,O function is symmetric with respect to and 
the interchange of the position of its arguments (see 
equation (45)), and then be regarded as a convolution 
for the Laplace transform 

(76) 

= A,f,(s) 

exp(-3) 

s+A, . 

So far it has been demonstrated that the temperature 
fields in either period of the regenerator operation can 

(70) be obtained in a closed form if the matrix temperature 
~st~butio~ at the start of each period are of the arbi- 

When IF,(C) is substituted by its approximation given 
by equation (65) one needs the inversion of 

trary polynomial order M in the spatial coordinate. 
However, the main advantage of using equations (65) 

A ~ exp(-?$F) 
and (66) as the trial solutions, is in evaluating the regen- 
erator effectiveness. Namely, from various equivalent 

I ai, 
m=O s”+‘(‘r+A,) 

(71) possibilities to find E from a known solution, as discussed 
above, formula (34) is the most suitable and can be 

in order to calculate the integral term (69). Since, for rewritten, upon using equations (61) and (62), as 

Re (s) > A, 
. f-1 

term by term inversion s + 5 of (71), recalling that 
equations (35) and (36) hold, will yield the result as =~[6’~~~~,d(-S1a,(i)di]. (77) 

given by equation (67) confirming thus relations (38) 
and (47). Then, with the trial solution of the form of equations 

The Laplace transform of the convolution term in (65) and (66), the effectiveness is given by 
equation (62), using equation (43) is 

(78) 

= ~,~~)[,p( -3) -enp(--(i,A,rl,)] and the problem is just to determine the coefficients 
a,,anda,form=0,1,2 ,..., M.ForanyfixedM 

(73) one needs 2(M+ 1) equations for M+ 1 unknown a,,,, 

so that, for IF, (5) approximated as in equation (65), the and for M+ 1 unknown a*,,, coefficients. These equa- 

straightforward inversion of tions are derived in the next section using the Galerkin 

5 ~[exp(-~) -exp(-U,A,ni)]l 

method and it is shown that the elements of the matrix 
of a set of 2(M+ 1) linear algebraic equations are 

m=O obtainable explicitly in terms of regenerator par- 

(+‘A I )“‘+ ’ (74) ameters A,, U,, IT and 8. 

confirms the result given by equation (68). 
In a similar way it can be shown that the approxi- 

mations for fluid and solid temperature fields Oz([,qz) 
and f&([, 92) given by equations (58) and (59), respec- 
tively, with E,(r) of the form given by equation (66), am 

THE GALERKIN METHOD 

Introducing the trial solutions j? ,(<) and F,( [) into 
the integral equations (63) and (64), one finds the 
residuals 

W,(S) = L,~UOJ%)~ (79) 

and 

B,(5) = L$l(& UC)) (80) 

in 0 6 <, 5 < 1. With the trial solutions of the form of 

(75) equations (65) and (66) the Gale&in method can be 
applied to the integral equations (63) and (64) as 



392 B. S. BACLIC and G. D. D~GUTI~OVI~ 

s 0 
iR,($d{=O, k=0,1,2 ,..., M (81) 

and 

I 
%?:([);dc = 0, k = 0, 1,2,. . . ,h4 (82) 

0 

which yields 2(&f+ 1) algebraic equations for the 
determination of the expansion coefficients u,,,, and 
atn for each M. Since the trial solutions, equations 
(65) and (66), when introduced into integral equations 
(63) and (64), give the residuals of the form 

and 

-l+~,(U,A,,Ar0 (83) 

respectively, the resulting set of algebraic equations 
(81) and (82) can be written as 

~~“[-AIIX(III.AI)Q,~+B~~~l = C,, 

k=0,1,2 ,..., M (85) 

,;i, [Brnku ,m -Amdnz, Md = 0, 

k=0,1,2 ,..., M 636) 

where 

1 

=--,Fo(k-i)! , (kk+ I)! 

’ f-1)’ K+~+,,Ai), (89) 

Equations (87) and (89) are the consequences of 
property (49). Note that C, = Bw--A,, and that 
coefficients B,,,, are independent of regenerator par- 
ameters and are exactly the same in both equations 
(85) and (86). The functional form of the Amk depen- 
dence of the regenerator parameters is the same as well, 
but in equation (85) Amk depend on II, = CJ,A, and 
A,> while in equation (86) A,k depend on II2 = U,A ,//?a 
and At = A,jo. 

Once the expansion coefficients a,,, azm (m = 

0, 1.2,. , M) are determined, for specified A,, ti,, TV 
and p (or A,, IT,, A2 and l-I,), from equations (85) 
and (86), the temperature fields of either fluid or regen- 
erator matrix at any position and any time instance 
are readily obtainable from equations (67) (68), (75) 
and (76). However, the most straightforward result to 
be obtained from known values of a,,,, and a,, is the 
regenerator effectiveness given by equation (78). 

When very precise results are required one must use 
higher approximations by increasing the order M of 
the trial polynomials. This will confirm the known 
feature of the Galerkin method : in the limit M -+ x 

it forces the residuals to be zero by making them (see 
equations (81) and (82)) orthogonal to each linearly 
independent member of the complete set of trial func- 
tions <‘/k! (k = 0, I, 2, tt., M). 

For design purposes one is primarily interested 
in reliable results for regenerator effectiveness and 
has to be assured that by increasing M (i.e. reducing 
the values of the residuals in the regenerator space 
0 < 5 < 1), the results for E correspond to an exact 
solution to certain decimal places. We now illustrate 
the convergent of this method by carrying out the 
computations to higher order terms. 

The coefficients a,, and aZrn (m = 0, 1,2,. . _, M) 

obtained from the algebraic set of equations (85) and 
(86), as well as the corresponding values of regen- 
erator effectiveness are presented in Table 1 for values 
of M up to 5 in the case of, arbitra~ly chosen, reduced 
lengths A, = 15.5, A, = 18, reduced period TI, = 16 
and larger reduced length to period ratio (A/II), = 
1.2. It is evident from Table 1 that the regenerator 
effectiveness is at the practically correct value (three 
significant figures) already at M = 2, and that the 
corresponding effectiveness results for M = 4 and 5 
coincide for six decimal places. The latter fact is true 
for the great majority of different combinations of 
four regenerator parameter values, and not just for 
the example presented in Table 1. 

The convergence towards the exact solution can 
be seen also by following the development of matrix 
temperature distributions at the end of respective per- 
iods ([F ,( 5) and IF J {) given by equations (65) and (66), 
respectively) with increasing the order (A4) of the trial 
solution. This is presented in Fig 2 for the same 
values of parameters as in Table 1. Obviously constant 
matrix temperatures (M = 0) and linear distributions 
(M = 1) are very rough and unrealistic approxi- 
mations. However, starting already with the second- 
order polynomials (M = 2) correct shapes of the tem- 
perature distributions are established, and they are 
almost indistinguishable from the plots of the dis- 
tributions for M = 3, 4 and 5. Table 2 provides the 
numerical values of ff, and IF, for M = 3, 4 and 5, 
wherefrom it becomes clear that the solution has prac- 
tically converged to the exact one at A4 = 5. 

We end this section by concluding that the Galerkin 
method provides practically accurate results for the 
regenerator effectiveness with the second-order 
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.-._.-.-.-. 
0.8 

0 
0 0.2 0.4 0.6 0.8’. 1.0 

5=1-c -x, 
0 0.2 0.4 0.6 0.8 1.0 

5=1-c 

FIG. 2. Matrix temperature distributions F,(c) and iF&n for various orders (&.f) of the trial solution: (a) 
M= 0,1,2and3; (b)M=4and5 (A, = 15.5, U, =0.8333,/l = 0.9375, u = 0.8611). 

Table 1. Convergence of s given by equation (78) by increasing the order (M) of the trial polynomials for At = 15.5, A, = 18, 
(A/II), = 1.2 and TIr = 16 (U, = 0.8333, A, = 15.5, /I = 0.9375, e = 0.8611) 

Expansion coefficients from equations (85) and (86) 
M ~td(mt l)! az,/(?ni- l)! s = (A,/n,)~~=o(az,-al,)/(m+I)! 

0 alo = O.l994847655E+OO azO = 0,8464496251E+OO 0.776358 

1 a,, = 0.4774757624E+OO azO = 06495968994E+OO 0.839393 
a,,/2! = -0.3004407361E+00 a,,/2! = 0.2269321763E+OO 

2 a,@ = 0.612305~5~E+~ arO = 0.5296996142E+OO 0.847277 
a,,/2! = -0.7089718580E+OO a,,/2! = 0.6069868991E+OO 
a,J3! = 0.2714202073E+OO a,,/3! = -0.2558692859E+OO 

3 alo = 0.6038717628E+OO a,, = 0..5172719219E$00 0.847233 
a,,/2! = -0.653637~708~+~ a,,/2! = 0.6850765~SE+~ 
u , J3! = 0.1770038495E $00 r&3! = -0.3877162736E+OO 
a,,/4! = 0.4766383761E-01 uJ4! = 0.6629797653E-01 

4 alo = O.S845412612E+OO azO = O.S321021858B+OO 0.847311 
a, ,/2! = -O.459572196OE+OO a,,/2! = O.S3~212~E~~ 
a,,/3! = -0,406937332OE+~ a&3! = O.S0299288~E-01 
a,,/4! = 0.7302788247E+00 a,,/4! = -0,4455804284E+OO 
a14/5! = -0.2734096322E+OO a,,/5! = 0.2050801859E+OO 

5 a,, = O.S8503979448+00 aZo = O.S351881492E+OO 0.847311 
a, ,/2! = - 0.46692252 16E + 00 a,,/2! = 0.49294952lOE+~ 
a,J3! = -0.3711900982E+OO a,,/3! = 0.2655371695E+OO 
~,~/4! = 0.6SS4213580E+OO a,,/4! = -0.87600819S7E+OO 
a,.,/5! = -0.2031960408E-t-00 az,/5! = 05924537939E + 00 
a, 5/6! = -0.2424905086E -01 c&6! = -O.l291244293E+OO 

(M = 2), and very precise results with fifth-order 
(M = 5) trial solution. 

results obtained on the Amdahl V/7 computer are 
presented. 

RESULTS 

The Galerkin method based computer software has 
been designed for an arbitrary combination of four 
regenerator parameters and successfully utilized on 
a variety of computing facilities. Here some sample 

The counter-flow regenerator effectiveness has 
been simulated with M = 5 for the following range 
of parameters 1 < A, Q 1000, 0 G II, < 2000, 0.2 f 
A2 G 2000 and 0 6 IT2 Q 10 000 which covers a 
wide range of unbalance and asymmetry factors. To 
cover this range in just 25 tables (or charts) E is pre- 
sented as a function of U, E [0,2] using A, as a par- 
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Table 2. Convergence of IF, and IF, given by equations (65) and (66). respectively, by increasing the order CM) of the trial 
polynomials for the same values of parameters as in Table 1 

@- I 

<=I-< M=3 M=4 M=5 M = 3 

0.00 0.6039 0.5845 0.5850 0.9895 
0.05 0.5399 0.5359 0.5359 0.9965 
0.10 0.4786 0.4832 0.4830 1.0016 
0.15 0.4204 0.4284 0.4282 1.0044 
0.20 0.3652 0.3731 0.3730 1.0048 

0.25 0.3132 0.3188 0.3188 1.0025 
0.30 0.2646 0.2667 0.2669 0.9974 
0.35 0.2195 0.2180 0.2182 0.9893 
0.40 0.1781 0.1735 0.1736 0.9779 
0.45 0.1405 0.1338 0.1339 0.9631 

0.50 0.1068 0.0995 0.0994 0.9447 
0.55 0.0772 0.0706 0.0705 0.9225 
0.60 0.0519 0.0474 0.047 1 0.8962 
0.65 0.0309 0.0295 0.0293 0.8657 
0.70 0.0144 0.0167 0.0165 0.8308 

0.75 0.0025 0.0083 0.0083 0.7913 
0.80 -0.0045 0.0036 0.0038 0.7469 
0.85 -0.0066 0.0016 0.0019 0.6975 
0.90 -0.0036 0.0010 0.0013 0.6429 
0.95 0.0047 0.0006 0.0006 0.5829 

1.00 0.0183 -0.0013 -0.0021 0.5173 

52 
M=4 M=S 

1.0043 1.0012 
0.9996 0.9998 
0.9981 0.9994 
0.9983 0.9994 
0.9987 0.9992 

0.9981 0.9979 
0.9956 0.9948 
0.9902 0.9892 
0.9812 0.9803 
0.9680 0.9675 

0.9502 0.9502 
0.9275 0.9280 
0.8997 0.9006 
0.8669 0.8680 
0.8293 0.8302 

0.7872 0.7875 
0.7412 0.7407 
0.6917 0.6906 
0.6397 0.6385 
0.5862 0.5861 

0.5321 0.5352 

B = u1/u2 

1.0 0.8 0.6 0.4 0.2 

0.2 a=1 /5 a=1 /4 a=1/3 o=l I2 o= 1 

e 
BALANCED UNBALANCED 

R 

?J 
i+ 
* 

e 
% 

* 

FIG. 3. Survey of parameter values that are covered in 25 regenerator effectiveness charts. 

ameter for fixed /? and CT. To provide an accurate 

linear interpolation within a table as well as among 

the tables, the following twenty A, values have been 

selected: 1, 1.5, 2, 2.5, 3, 3.5,4, 5, 6, 7, 8.5, 10, 12, 15, 
18, 23, 30, 50, 100 and 1000, and each effectiveness 
table (or chart) was for one of five values of B and G/? 
from Fig. 3. A typically generated effectiveness table 
is presented in Table 3, and four typical effectiveness 
charts are presented in Figs. 4-7. The complete set of 
charts will be published elsewhere [24]. 

We note that all five figures of effectiveness values 
in Table 3 are accurate. To the best of the authors’ 

knowledge there is no method reported that gives as 
accurate results in such a wide range of parameters. 
Also it is worth noting that an average CPU time for 
generating a table like the one presented in Table 3 
was 90 s on the Amdahl V/7 computer. 

The results presented in Figs. 4-7 correspond to the 
combination of parameters from the four corners of 
Fig. 3, but arranged in a sequence of increasing favor- 
ableness of counterflow regenerator performance. The 
lowest effectiveness values are those in Fig. 4 for a 
symmetric (Q = 1) and balanced (p = 1) regenerator. 
The balanced (fl = 1) and highly asymmetric (a = 0.2) 
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u,= rl,fA, = (ntAl,,, 

FIG. 4. CounterBow regenerator effectiveness for fi = I and 
fT= I. 
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u,=n,/A,=~n/Al~ 

FlG. 6. Counterflow regenerator effectiveness for@ = 0.2 and 
r7= 5. 
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u,=n,/h,. In/Al, 

/III 
OO 

I I I 11 1 I 
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U,: fl,/A, = IlllAl, 

FIG. 5. Counterflow regenerator effectiveness for fi = 1 and FIG. 7. Counterflow regenerator effectiveness for /I = 0.2 and 
c7 = 0.2. 6= 1. 

regenerator is more favorable for all A, values as 
can be seen from Fig. 5. 

Figure 6 presents the results for a highly unbalanced 
(fl = 0.2) and highly asymmetric (o = 5) regenerator. 
Except for low values of A, (A, < 2.5) this is a much 
better regenerator performance than the case pre- 
sented in Fig 5. 

Among the four cases presented the highest effec- 
tiveness values for all A, values are attained at highly 
unbalanced (p = 0.2) but symmetric (a = I) oper- 
ation of the regenerator as shown in Fig. 7. 

CONCLUDING REMARKS 

The present method provides a very simple and 
straightforward solution to the unbalanced and asym- 

metric counterflow regenerator problem for any arbi- 
trary combination of the four regenerator parameters. 
Compared to various other approximate methods the 
present solution has no computational restriction 
associated with the large values of TI and A. The 
convergence of the solution is found to be very fast 
and the computation time very short which made it 
possible to investigate regenerator effectiveness in an 
extremely wide range of parameters and readily to 
generate appropriate tabulations and effectiveness 
charts. Sample results of the analysis are presented in 
Table 3 and Figs. 4-7. The use of the Galerkin method 
has proved to be very powerful for solving the set of 
integral equations associated with the general coun- 
tertiow regenerator problem. Selection of alternative 
sets of four regenerator parameters (U,, A ,, j and e) 
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made it possible to provide a physically meaningful 
interpretation of regenerator performances. 
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PROBLEME DU REGENERATEUR THERMIQUE A CONTRE-COURANT ET BILAN 
ASYMETRIQUE: SOLUTION PAR LA METHODE DE GALERKIN ET SIGNIFICATION DES 

PARAMETRES ADlMENSIONNELS 

Resum&Le probltme du regenirateur thermique a contre-courant et bilan asymetrique, decrit par les 
idtalisations classiques est resolu par la methode de Galerkin. Les equations inttgrales relatives aux 
conditions a I’equilibre cyclique de la matrice du regenerateur sont transformtes et un systeme d’tquations 
algebriques. Ceci permet la determination des coefficients de dtveloppement associes a la representation 
des distributions de temperature de matrice au depart de chaque p&ode du cycle sous la forme d’une serie 
puissance en fonction de la variable d’espace. La methode est aisle et d’application directe et elle conduit 
a des expressions analytiques explicites des coefficients du developpement pour une combinaison quel- 
conque des quatre parametres sans dimension du rtgtntrateur. Un accord excellent est trouve entre les 
resultats de cette solution nouvelle et ceux deja connus par differentes solutions numeriques. On discute la 
convergence entre les calculs numtriques exacts. La solution est utiliste pour prtdire l’efficacite dans le cas 
d’un large domaine pour les quatre parametres sans dimension. On presente les raisons thermodynamiques, 
d’une facon alternative mais rationnelle et chargee de sens, de definir les quatre parametres du rtgtnerateur. 
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BERECHNUNG VON GEGENSTROM-REGENERATOREN MIT HILFE DES GALERKIN- 
VERFAHRENS UND DIE BEDEUTUNG DIMENSIONSLOSER PARAMETER 

Zusammenfassung-Der thermische Gegenstrom-Regenerator wird unter Verwendung der klassischen 
Idealisierung beschrieben und mittels der Galerkin-Methode berechnet. Die Integralgleichungen zur 
Beschreibung der zyklisch wiederkehrenden Vorglnge in der Regenerator-Matrix werden in einen 
Satz algebra&her Gleichungen transformiert. Dies erlaubt die Bestimmung der Koeffizienten bei der 
Beschreibung der Temperaturverteihmg in der Matrix zu Beginn eines Zyklus in Form einer Potenzreihe in 
Abhgngigkeit von der Raumvariablen. Das Verfahren ist leicht und in einem Zuge anwendbar und 
fiihrt zu expliziten analytischen Ausdriicken fiir die Koeffizienten der Reihenentwicklung bei beliebiger 
Kombination der vier dimensionslosen Parameter des Regenerators. Die tibereinstimmung der Ergebnisse 
aus dieser neuen Liisung mit denjenigen, welche in der Literatur aufgrund unterschiedlicher numerischer 
Berechnungen angegeben werden, ist hervorragend. Die Annlherung-bei Berechnungen unter Ver- 
wendung von Ausdriicken hiiherer Ordnung-an die exakte Liisung wird diskutiert. Die Liisung 
wird fiir Wirkungsgradberechnungen in einem weiten Bereich der vier dimensionslosen Parameter ver- 
wendet. Es werden thermodynamische Griinde fiir eine abgewandelte, jedoch sinnvolle Art der Definition 

der vier Regenerator-Parameter vorgestellt. 

3A&4YA ACMMMETPWIHO-HECEAJIAHCkiPOBAHHOl-0 I-IPOTHBOTO~HOl-0 
TEl-IJIOBOrO PEl-EHEPATOPA: PEIUEHkiE METOAOM rAJIEPKkiHA A 3HA9EHWE 

EiE3PA3MEPHbIX I-IAPAMETPOB 

AEOOTWES-M~TO~OM Euepmaa pewaeTcr 3maqa acHMMeTpH~Ho-Hec6anaHcHposaHHoro II~OTHBO- 
TOYHO~O TennoBoro pereriepaTopa, omicbmaeidas ynaccwrecuihni ~eaJni3arwwsi. Wwerpanbwe 
ypaBHeHHK,OTHOcKIUHWKK yCJl0BEJlP.A o6pamemm npHWiJISiHi7pH'ECICOMpaBHOBeCHH MaTpAI&l PreHe- 

paTOpa,n~O6pa3yIOTCK B CHCTeMy aJrre6pa%iwcrrHx WaBHeHHii. 30 nO3BOJEZT On,EneJIHTb KO+#Ui- 

wieHTbl pa3noreHsin ~OC~~~CTBOM npencranneHHn MaTpnw pacnpeneneHi TeMnepaTyp B Hasine 

Ka~oronepaonalurvna~n~ecreneHHorop~arepe3npocrpa~crseHHyIonepeMeHHylo.~pe~orceH- 

Hbdi MeTOA KBJIReTCK npOCTblM H JIerKO lTpI.lM.SEMbIM II n03BOJISeT nOJIyWITb PBHble aHaTMTHYeCKHe 

BbIpa~eHHK l(JIK KOZ#JHlWeHTa pa3JIOKCeHHK IIpH nro6oB KOM6HHaQHH 'IeTbIPeX 6e3pa3MqHbIX napa- 

MeTpOe aCHMMeTpH'iHO-HeC6aJIaHCHpOBaHHOrO PereHepaTOpa.nOJI~eHO XOpOrUee COBnaJJeHHe p3yJIb- 

TaTOB n&YZWTaBJIeHHOrO HOBOrO fWWeHHK &I pe3yJIbTaTOB pa3JIWiHbJX qHCJleHblX FlIIeHHfi, AMeIoWXCn 
BJIHTepaTy~.06CyKQUeTCK npH6JIHKCeHHepe3yJIbTaTOB K TO'iHEdM npH PaVETaX EneHOB 6onee BblCO- 
rcoro nopnnxa. IIonyveHHoe peuxeHae HcnonbsyeTcn ann onpenenemin ~+&KTHB~~OCM unipororo ma- 

na3oHa H3MeHeHHii w~btpex 6e3pa3bfepHMx napabwrpoe. nPeACTaBneH0 TepMO~HaMfiWCKOe 

060CHOBaHHe a.llbTepHaTHBHOrO, HO paUHOHUbHOr0 H uenecoo6pa3Horo cnoco6a OnPeJleJIeHSfK 

reTupexnapaMeTpoBpereHepaTopa. 


