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Abstract—The asymmetric-unbalanced counterflow thermal regenerator problem described by the classical
idealizations is solved by the Galerkin method. The integral equations relating to the reversal conditions
at cyclic equilibrium of the regenerator matrix are transformed into a set of algebraic equations. This
permits the determination of the expansion coefficients associated with the representation of the matrix
temperature distributions at the start of each period of the cycle in the form of a power series in terms of
the space variable. The method is easy and straightforward to apply and leads to explicit analytical
expressions for the expansion coefficients for any combination of the four dimensionless parameters of the
asymmetric-unbalanced regenerator. Excellent agreement has been found between the results of this new
solution and those reported in the literature for different numerical solutions. Convergence towards the
exact results by computations to higher order terms is discussed. The solution has been used to predict the
effectiveness of a wide range of the four dimensionless parameters. Thermodynamic reasons for an alter-
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native but rational and meaningful way of defining the four regenerator parameters are presented.

INTRODUCTION

IT wasin 1972 when Hausen [1], surveying the theories
of heat transfer in regenerators, wrote :

«...as far as I know, the question to what degree all
these methods connected with the integral equation
are suitable to practical problems, is not yet
answered sufficiently ...”

It is the intention of this paper to contribute to answer-
ing Hausen’s question.

The simplest mathematical representation of fixed
bed cyclic thermal regenerators has remained virtually
static since the initial publication of Nusselt [2], and
likewise, the rotary matrix exchanger has also stayed
in the same state since the original work of Coppage
and London [3]. In both systems, the sole mechanism
of heat transfer between the flowing gases and the
regenerator matrix is assumed to be forced convec-
tion, and this results in two coupled first-order partial
differential equations describing the energy transfer
in each of two periods of operation. Despite the
simplicity of the differential equations under classical
assumptions, their solution has proved to be chal-
lenging, and performances of counterflow regenerator
have been widely investigated numerically as well as
analytically. The state-of-the-art and survey texts on
this subject appeared in the books by Hausen [4] and
Schmidt and Willmott [5], and the work of Razelos [6].
Available closed methods for solving the counterflow
regenerator problem are mainly related to the govern-
ing differential equations. The method of lines was
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used by Hill and Willmott [7] in order to reduce the
counterflow regenerator problem to a set of ordinary
differential equations in time. Their approach uses the
trapezoidal rule to discretize one of the governing
partial differential equations, and is related to the
method proposed by Razelos [8]. Recently the com-
putation speed of this method has been improved by
Hill and Willmot [9]. However, all these methods
avoid the use of the integral equations. As stated at
the beginning, this paper is a presentation of the
method for solving the counterflow regenerator prob-
lem formulated by the integral equations. It over-
comes the difficulties of the method of Iliffe {10] and
Nahavandi and Weinstein [11], both used for solving
the integral equations, by looking for a solution in a
class of special functions that identically satisfy the
governing differential equations.

For design purposes a regenerator is usally con-
sidered to have attained cyclic equilibrium, i.e. the
fluids and matrix temperature distributions are
repeated in successive cycles. The solution of the
governing differential equations is presented in terms
of the regenerator effectiveness as a function of per-
tinent dimensionless groups. The specific form of these
dimensionless groups is to some extent optional, and
the two most common forms are : the number of trans-
fer units—capacity rate ratio method (generally used
for rotary regenerators) whereby

&= 8(]Vtu,ﬂa C*, Cl‘{‘: (aA)*) (l)

and the reduced length-reduced period method (gen-
erally used for fixed-matrix regenerators) in which
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NOMENCLATURE

matrix to gas heat transfer area [m?]
constants defined by equation (87)
expansion coeflicients in trial solution,
equation (65)

expansion coefficients in trial solution,
equation (66)

constants defined by equation (88)
unbalance factor, # [dimensionless]
constants defined by equation (85)
reciprocal of minimal utilization factor,
1/U, [dimensionless]

specific heat of gas at constant pressure
Dkg™'K™]

specific heat of solid matrix

Hkg™' K7

matrix temperature distribution at the
start of period 1 [dimensionless]
matrix temperature distribution at the
start of period 2 [dimensionless]
special function defined by equation
37

special function defined by equation
(38)

modified Bessel function of nth
(integer) order

integers {counters)

L regenerator length in the flow direction
(m]

L,{F,,F,} integral equation operator,
defined by equation (63)

L,{F.F,} integral equation operator,
defined by equation (64)

£ Laplace transform operator

M order of the trial solution

M gas mass flow rate [kg s~ ']

M, total mass of solid matrix [kg]

Nuo  modified number of transfer units,
A /(1 +0op) [dimensionless]

P duration of gas flow period [s]

J/ Laplace transform variable (5 - p)

Q.. actual quantity of heat being
transferred in the regenerator [J]

QO..x  maximal quantity of heat that can be
transferred in the regenerator,
defined by equation (26) [J]

# residuals of the integral equations,
defined by equations (79) and (80)

Re (s) real part of complex variable s

s Laplace transform variable (£ — s)

T temperature [K]

t time variable s]

U utilization factor,

TA = (Mc,P)/(Mc)
[dimensionless}]

u

dummy variable

V{y, z) special functions defined by equation

Vio(r.2)

v

(35)

special functions defined by
equation (36)
dummy variable

x coordinate along the fluid 1 flow
direction [m]
¥ dummy variable
z dummy variable.
Greek symbols
« gas to matrix heat transfer coefficient
Wm ?K™]
(x4)* reduced period ratio, I1,/11, = o
[dimensionless]
B unbalance factor,
U\/U, = (MCpP)t/(MCpP)z
[dimensionless]
£ regenerator effectiveness, defined by
equation (27) [dimensionless]
4 complementary spatial coordinate,
1 —¢ [dimensionless]
n dimensionless time variable, ¢/ P
[dimensionless]
g dimensionless temperature,
(T_ Tl,in)/(Tl an TZ,'m)
[dimensionless]
A reduced length for a regenerator,
aA4/(Mc,) [dimensionless]
4 dimensionless spatial coordinate, x/L
[dimensionless]
I1 reduced period for a regenerator,
oA P/(Mc,) [dimensionless]
o asymmetry factor, A /A,
[dimensionless].
Subscripts
c cold
h hot
in inlet
m matrix
out outlet
sl solid in period 1
82 solid in period 2
1 smaller U
2 larger U.
Superscripts
- approximation

Laplace transform.
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&= a(Aha Ac’ Hh’ Hc)' (2)

These two representations are equivalent as was
shown by Shah [12], while Heggs [13] detailed the
rotary system parameters in terms of fixed bed ones.
The compilation of the relationships between the
dimensionless groups of the two methods is given by
Shah [14]. This one-to-one correspondence between
the two methodologies allows the results obtained
either in the form of equation (1) or (2) to be used for
both types of regenerators.

The problem of establishing the ¢ = e(A, A, I,
I1,) relationship is in fact that of evaluating the actual
heat transfer rate at cyclic equilibrium. Since no
closed-form solutions of the mathematical model of
counterflow thermal regenerator problem are avail-
able, and since four different dimensionless groups are
the parameters of any solution, all previous attempts
to solve the problem, either numerically or analyti-
cally, have been predestined to a rather limiting range
of parameters. Evidently there is a need for: (i) a
reliable and readily applicable method for solving the
counterflow regenerator problem in a wide range of
all governing parameters, and (ii) a rational way of
presenting the results.

Recently it was demonstrated that the Galerkin
method yields a solution that predicts very accurately
the regenerator effectiveness of symmetric-balanced
systems with 1 < A <2000 and 0 < IT < 4000 [15}.
This paper is intended as a proof that the adoption of
the Galerkin method for solving the general counter-
flow regenerator problem is a sufficient step in sup-
plementing the first of the above needs. The asym-
metric-unbalanced regenerator problem was first
attacked via the Galerkin method [16]. Latterly it has
been shown that the Successive Integral Method when
applied to the same problem, but with no reference to
the integral equations, is equivalent to the Galerkin
method [17]. The presentation of the complete set of
results for the range of four regenerator parameters
of practical interest is given in ref. [18]. Here, only the
sample results for a randomly selected set of four
regenerator parameters are presented together with
the thermodynamic reasons for an alternative but
rational way of defining the regenerator parameters.

THE DIFFERENTIAL EQUATIONS
AND REGENERATOR PARAMETERS

The classical thermal regenerator model [1,2] is
based on the following idealizations :

(a) total thermal capacitance of the solid regen-
erator matrix is constant;

(b) heat capacity rates of both fluids are constant ;

{c) thermal conductances for convective transfer
between the fluid and matrix are uniform and con-
stant;

(d) transit times required for a gas particle to flow
through the regenerator are negligibly small compared
to the gas flow periods;
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(e) solid matrix material offers no resistance to heat
flow in the direction normal to fluid flow;
(f) no heat is conducted axially.

Based on these assumptions, an energy balance pro-
vides two equations applicable during the hot gas flow
period

e BN, Y 4 3)

and two equations during the cold gas flow period

1 a7,
ix; PR ——ﬁc“gﬁ“—Tm—Tc- CY)

The regenerator can operate with either uni-
directional (plus sign in equation (4)) or counterflow
of streams (minus sign in equation (4)). Since the
mathematical model for the unidirectional operation
mode has been solved by exact analytical procedures
[19], only the counterflow regenerator problem will be
discussed in this paper.

In equations (3) and (4) ¢ is the fractional distance
along the flow path in the regenerator matrix of
length L, and % is the fractional completion of a
respective gas flow period. Temperatures of the hotter
gas, of the colder gas and of the solid matrix are
denoted by T,, T. and T, respectively. The four
parameters A,, A, (reduced lengths), II, and TI.
(reduced periods) are defined in the Nomenclature.

Differential equations (3) and (4) describe the
regenerator operation when the appropriate bound-
ary conditions are specified. These are constant gas
inlet temperature T, ;, and T, at the opposite ends
(¢ = 0 and 1) of the regenerator matrix, and the con-
dition stating that the matrix temperature field at the
end of one gas flow period is the initial matrix tem-
perature distribution for the subsequent gas flow
period.

In this paper the mathematical model of the counter-
flow thermal regenerator is considered in dimen-
sionless form in the space and time domain as
shown in Fig. 1. As seen from Fig. 1 the space
domain 0 < ¢ = x/L < 1 is unique for both periods,
while the time domains 0 <y, = /P, <1 and 0 g
n,=1/P, <1 are separate for each period. The
gas flows, i.e. the flow periods, are not distinguished
by the attributes ‘hotter’ or ‘colder’, but by ‘weaker’
and ‘stronger’. The subscript 1 is assigned to the
weaker gas flow period such that the respective
U, = (IT/A), ratio is the smaller of the two ratios:
U, = (I1/A), and U, = (IT/A).. The use of the IT/A
ratio as a regenerator parameter instead of reduced
period IT was first suggested by Johnson [20] who
termed it the ‘utilization factor’. The main advantage
of using

Up = (I/A), and U, = (I1/A). &)

is the fact that these parameters do not contain the
fluid to matrix heat transfer coefficients of the respec-
tive flow periods. Thus, defining
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Fic. 1. Space (0 <& < 1) and time (0 <#,, #, < 1) domain of a counterflow regenerator in cyclic
equilibrium.
U, = min {U,, U.} (6) transferring heat from one to the other gas. The goal

the matrix and fluid enthalpy balance for the weaker
period can be written in dimensionless form as

L 00, (&, m) + 20,(&,n1) _
U, on, og

in0 < n, < 1and 0 < & < 1. The physical meaning of
U, can be seen from

0 Y

L [gsl(é’ 1)"931('5’ {})] dé

Ul N 1"Bl,out

}_J\ [Ts‘(X,P;)“’TS‘(X,O)]dX
L Jo

Tl.in - Tl,aut

mean matrix temperature change
" mean gas temperature change

in the weaker period (8)

where the gas 1 outlet temperature {(see Fig. 1) is

1
Bmut:L 0.(1,m,)dn,. ®

From equation (8) it is clear what is meant by
terming U the utilization factor. The word stands for
utilizing the regenerator matrix as an intermediator in

is not to make a large mean matrix temperature
change in this process, and obviously for a favorable
regenerator operation U, should not be greater than
unity, but on the contrary much less than unity.

The utilization factor in the stronger period, where

subscript 2 is assigned to all quantities, is
U, = max {U,, U} (10)

and the matrix and fluid enthalpy balance equation
for counterflow operation of a regenerator is

1 20(Ems) 1 30:(6n) _

P AL A A Ky 11

U B an
in0<n,<land0< ¢ <1, where

B=UyU, <1 (12)

is introduced to eliminate U,. Schmidt and Willmott
[5] termed B the unbalance factor. The main advan-
tage of using the unbalance factor is the overall
enthalpy balance for the regenerator can be written in
the form equivalent to any two-fluid heat exchanger

f;Z.Qm = B(I —6!,0u1) (13)

where the outlet fluid temperatures are for the regen-
erator given by equation (9) and

i
02,out = L 82(0’ ’72) an (14)
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The physical meaning of the unbalance factor can
be seen from

B — 02,out = T2,oul - T2,in
1-6 1,0ut T\,in - Tl,out

total gas temperature change in the stronger period
" total gas temperature change in the weaker period

(15)

Hence, as for any two-fluid heat exchanger, the higher
the unbalance ( « 1) the better the regenerator per-
formance (higher effectiveness).

As shown in Fig. 1 the heat transfer equation for
the weaker period

00, ny)
o¢

introduces the reduced length A, (dimensionless heat
transfer coefficient) as the third regenerator par-
ameter. Its physical meaning is

1— 0 1,out

J; J; [0.(&n)—0,,(&n)]dE dn,

+A[0,(E,1)—0,(En)]1=0 (16)

A, =

T],in - Tl,oul

- 1 P, L
P, L J; [T,(x, ) — T, (x, )] dx dt

total gas temperature change
" average transfer potential

in the weaker period (17)

so that it plays a role of the Stanton number for the
regenerator. Thermodynamically speaking it is desir-
able to produce a given gas temperature change at as
low as possible average transfer potential. This would
be a more reversible heat transfer process in the sense
of lower entropy production. Thus, for a thermo-
dynamically favorable operation of a regenerator it is
desirable to have high values of A,.

Finally, the fourth differential equation, describing
heat transfer in the stronger period (see Fig. 1)

00,(¢,m) Ay
“ T + 7[92(5,712)—932(5,’12)] =0 (18)

introduces the fourth dimensionless parameter
o=A/A,; 19)

the asymmetry factor. It is the ratio of relative average
transfer potentials in the stronger and weaker period :

J; J; [0:2(&. n2)—0,(&,m2)] d dn,

62,out

11
J; J; [0.(&,n)—0,,(& )] dE dn,y
1__ol,ont

g =
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0
T2,out - TZ,in

1 & (¢
E.ﬁ f [Te2(x, ) = Ta(x, )] dx dt

1

= 3 n
ZP_!J; J; [Ti(x, =T (x, 0] dx d

Tl,in - Tl,cul

average transfer potential
total gas temperature change

in the stronger period

average transfer potential
total gas temperature change

in the weaker period
20)

As stated above A, should be as high as possible
for the favorable regenerator operation. Then, from
the definition of o, A, should be at least of the same
order of magnitude or higher. Thermodynamics, thus,
imposes the study of ¢ <1 for properly designed
regenerators.

Differential equations (7), (11), (16) and (18) to-
gether with the following boundary conditions :

6,0,n,) =1 @1
0,(1,n,) =0 22
0,1(,0) = 0,,(&m, = 1) 23)
0,2(6,0) = 0,(&m, = 1) 24)

describe the operation of a counterflow thermal regen-
erator as a function of four parameters: U, A, § and
o. The classical parameters discussed in the intro-
duction are readily established from the following set
of relations: IT, = UA,, II, = U,A\/Bo, Nyo=
A/(1+opf), C* =B, CE = 1/U,, (ad)* = af.

The main advantage of introducing these four inde-
pendent dimensionless parameters (U, A,, f and o)
of the regenerator operation is that one can easily
identify the physical meaning of some special cases
corresponding to the limiting values of these par-
ameters. One can deduce the following operating con-
ditions:

(1) U, -0 corresponds to the aperiodic (or ‘re-
cuperative’) operation of a regenerator. The case when
the matrix temperature distribution is time inde-
pendent and is the same in both periods. Fluid tem-
peratures are in the steady state as well.

(2) U, > o0 means no process at all and the ex-
changer ceases to exist. This case is not to be con-
sidered.

(3) A, = 0 corresponds to ‘short’ regenerators—a
case with no heat transfer at all—not of practical
interest.

(4) A, —» o corresponds to ‘long’ regenerators—a
case with vanishing transfer potential in both periods.

(5) B—0—a completely unbalanced exchanger.
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The case with no temperature change throughout
the stronger period for any value of &. Thermo-
dynamically the best operation for given U, and A,.

(6) f— 1—a balanced regenerator. Each stream
undergoes exactly the same overall temperature
change.

(7) 0 - 0—a completely asymmetric regenerator.
The case when there is no transfer potential in the
stronger period. This case together with U, — 0 and
A, — oo yields the highest effectiveness for any given
unbalance factor §.

(8) 0 - 1—symmetric regenerator,

(9) 0 - o designates a disappearance of the
stronger period implying that there is no process at
all. This case should not be considered. Actually, even
the case with ¢ > 1 should not be studied since the
regenerator performance deteriorates with increasing
values of ¢.

Real interest is limited to just six of the above
special cases (U, - 0; A, > 0;Bf—-0,8-1;6-0
and o — 1) and they must be studied separately. This
paper addresses the general unbalanced and asym-
metric case,i.e. 1 > f>0and 1 > ¢ > 0.

REGENERATOR EFFECTIVENESS

The effectiveness of any two-fluid heat exchanger
essentially is a dimensionless and normalized measure
of the quantity of heat actually being transferred
between the two streams. The normalization requires
the recognition of the maximum possible fluid
enthalpy change in the system. This hypothetical
quantity of heat (Q...) can be seen as the enthalpy
change of the weak stream undergoing the maximum
possible temperature change (Ti;—7.n)- A ‘weak
stream’, or more precisely a ‘weaker period’ of a regen-
erator is the one with the smaller of the two possible
heat capacities, (Mc,P), and (Mc,P).. Thus, the attri-
bution of ‘min’ should be given to the period for which
the relation

(McpP)min = min [(MCpP)hs (Mcpp)c] (25)
holds, so that
Qmax = (McpP)min(Th,in - Tc,in)' (26)

The regenerator effectiveness is then simply defined
as

£= Qacl/ Qmax

and it is a unique measure of its thermal performance.
By the uniqueness here it is meant that the same ¢
should be obtained by writing Q,., either in terms
of hot period parameters or in terms of cold period
parameters. This was demonstrated [21] for a model
of the diabatic regenerator, and the results given there
reduce, for the adiabatic model under consideration, to

&= (Mcpp)h(Th,in - Th.out)/(McpP)min(Th,in —Tein)
= (MCpP)c(Tc.oux - Tc,in)/(MCpP)min(Th,in - Tc,in)- (28)
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In order to rewrite these equations in terms of the
regenerator parameters used in this paper (utilization
factors U, = (II/A)pw and U, = (TI/A),..,, and the
appropriate dimensionless temperatures) divide both
the denominators and numerators by the matrix total
heat capacity M, and assign correspondingly the
subscripts 1 and 2. This will yield

_ Tl.in B Tl.oul
&= T]‘jn — Tz,m =1 ’Ql.out (29)
or
u, T ou: ~T in 1
=22 20wT 2 1 (30)

h FI Tl,in - TZ,in - ﬂ 02'0““

where 6, ., is the mean outlet gas temperature evalu-
ated, using equation (9), from the gas outlet tem-
perature distribution 8,(1,#,) in the weaker period.
Similarly 6,,, is the mean outlet gas temperature
evaluated, using equation (14), from the gas outlet
temperature distribution 0,(0,%,) in the stronger
period. 6, ., and 8, are the results of the solution
of the mathematical model and will, thus, depend on
four regenerator parameters. This will yield a relation-
ship

e=¢(U,, A}, B,0) 3h

which can be expressed also in terms of the classical
parameters as in equation (1) or (2).

Having the complete solution to the problem one
can evaluate the regenerator effectiveness from any of
the two equations (29) and (30), but it should be
emphasized that there are three more equivalent
expressions. These arise from alternative ways of
expressing @,.., and are as follows.

From the average driving force (transfer potential)
in the weaker period

3=A1J; J; [0:(&,1)~0,, (& n)] dE dy,. (32)

From the average driving force (transfer potential)
in the stronger period

Al ! 1
Bzﬁéﬁ L[ﬁsz(é,ﬂz)—&(é,nz)l dedn,.  (33)

From the energy accumulated in the matrix during
one period

6= Uif [0.0(& 7 = D~0,2(&mz = D] dE. (34)
iJo

As stated above ¢ can be computed from any of
the alternative formulae, but it appears that, for the
method presented in this paper, equation (34) is the
most convenient.

FUNCTION USED FOR THE SOLUTION

For a concise notation a class of special functions
of two variables is extensively used throughout this
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paper. These are defined by the following Laplace
transform pairs;

27 {‘3""—["5’;&@} = Vi)
=ep(-—y-2 3 (;-f 1) L/ 6D ()
_yJexp[—yplp+ DI

e'gp—fz {“—(m-} = Vi.O (y’ Z)

= exp (—y =2/ "U_ 2/ (32) (36)

fori=1,2,3,...,y,2 2 0. The notation V;and V,, is
due to Serov and Korol’kov {22}, but these functions
are also related to the families of functions Fi(y, z) and
Gy, z) introduced by Romie [23]. Note that Romie’s
[23] functions are

E(ya Z) = I/H- I(y') Z) (37)

Gi(y’ Z) = (_ l)i+l [Vl.o(ya Z)+ lz (_ l)n Vn(ya Z)]

n=1

(38)

fori=0,1,2,...,and
Fo\(52) = Vao(3,2) (39
G_.(3,2) = Vi3 2). (40)

Some of the properties of ¥;and V,, functions that
are of importance in this paper are

Vi) =exp(—y), Vi(0.z)=1  {41)
Zi—l
Vi(3,0)=0, V{(0,2)= e
i=23,4,... (42)

Lyp{Va0(3,2)} = exp [—yp/(p+ )] —exp (— )

43)

I-Vin2)=Vi-Vi.(n2 44)
Vie(r,2) = Vilz,y) 45
Vaol3,2) = V205, ). (46

Forn=0,1,2,... the following integrals hold :

[[Gra-eas=coa @

L % VZ:O (y_é’ Z) dé = Vn+ ,(z,y}—exp (—Z)JHL:

48)
'y » -
ﬂ T Viipomydn = mgo(—l) Gt Viems (1, 2).

49)
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Easy ways to compute these functions are described
in refs. [15, 23].

INTEGRAL EQUATIONS

The formal solution to the equations of the weaker
period, equations (7) and (16), with the inlet fluid
temperature given by equation (21) and arbitrary
initial matrix temperature distribution

05,(£,0) = Fi(S) (50)
is given by

0:1(&,m1) = Vi(A& UA)
(4
+A1J: Fi@V oA (E—w), U A 1du (1)

and
8.,(&n) = V(AL U A
VoA U A )+ () exp(—UA )

(4
+A, J‘ FiaVo A (E—w), U A ]du. (52)
o

At the end of gas flow in this period, when 5, = 1,
the matrix is left at the temperature distribution

8.5 D=V, (AL TUAY)
=VioA&UAD+F (O exp(—UA)Y)

4
+A, j Fi@VyolAi(E—w), UiAJdu. (53)

In a similar way the solution (again formal) to the
governing equations for the stronger period, equa-
tions (11) and (18}, rewritten for convenience with the
downstream coordinate { = 1—¢, i.e.

00,({,m) Ay

-+

a( _('; [82(53 ’72) ‘952(‘5:’3 ’72)} =0 (54)

100G | 100G _
U, P B 74

in 0<{<1 and 0< 9, <1, with inlet fluid tem-
perature (see equation (22))

6,(0,7,)=0

(5%

(56)

and arbitrary initial matrix temperature distribution

0,,(£,0) = Fo(O) (57
is given by
AI ¢ Al 1 1
0:(Ln2) = . J; I}:Z(U)VI.O[F ({—v), Uﬁ;\ ’12‘] do
8
and
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. . UA
8,0, n2) = F2( exp (‘“ éa_ : ’?2)
Bo
At the end of gas flow in the stronger period, when

#, = 1, the regenerator matrix is left with the tem-
perature field

A [* A
+ =4 j Fao) VMI}—’ (—v), —— '72} dv. (59)
g o a

g UA
9&;2(55 1) = [‘l:z(i) eXp(— —l;;-lv)

A ff Ay . U,A
+— ﬁ Fz(v)Vzbo[}—(g-v}, éa']dv. (69)

Probably the simplest way to prove that the solution
given by equations (51) and (52) satisfies equations
(7), (16), (21) and (50), as well as that equations (58)
and (59) satisfy equations (54)-(57), is to refer prop-
erly to the fundamental properties of the Laplace
transformation with respect to dimensionless time
variables 5, and %, taking into account the trans-
form pairs given by equations (35) and (36).

It has been stressed that the above solutions are
formal and valid for arbitrary given functions F,(&)
and F,({). When applied to the cyclic operation of the
regenerator the reversal conditions will impose the
constraints on F,(£) and F,({) but the solution will
remain formal until these two temperature fields are
explicitly determined. Let us be more specific. The
periodic equilibrium conditions for the regenerator
matrix state that the spatial temperature distribution
at the end of one period should coincide with that at
the beginning of the other period, i.e.

0.(E D =F(1=¢)

(61)
and
0., D =F0-0.

When these conditions are combined with equa-
tions (53) and (60) one is left with two integral equa-
tions for F,and [,

L{F(8.F(O} = F2(1-8)

(62)

~—/\;J;IF;(u)Vz,o{A:(é*u),U;Aw}du

—F(&exp (—UA)—-1+V (U ALAD =0
(63)
LiFO.FAD} =F (10

A fF A U.A,
T J; Fo(0)V20 [?)(C—v), —E;:l dv

lAl
~FO e - %«;) )

Note that the last two terms in equation (63) are the
consequence of property (44).

B. S. Bacuic and G. D. DraGguTINOVIC

The structure of these integral equations have made
futile all the attempts to obtain F, and F, in a form
suitable for explicit analytical evaluation of the regen-
erator performances. That is the main reason why any
solution of the form presented above remains formal
unless we are able to find even approximately, F, (&)
and F,{{) in a closed form. The aim of this paper is
to reveal that very reliable results are obtainable by
solving the integral equations (63) and (64) approxi-
mately by the Galerkin method that utilizes a power
series expansion as a trial solution for F(&yand F,({).

TRIAL SOLUTION

Consider the approximation of the unknown func-
tions F,(&) and F,({) in the form of the same order
(M) polynomials in space variables ¢ and {, respec-
tively, namely let the trial solutions be

Fi =Y apminiml (65)
B = 3 am("im! (66)

m=0

where a,, and a,, are the unknown expansion co-
efficients which are yet to be determined. Next sup-
pose that these coefficients are known (they will be
determined by the Galerkin method in the next
section). Then, upon substitution of equations (65)
and (66) into equations (51) and (52) one can obtain
approximations for fluid and solid temperature fields,
6!(55 ’71) and 95((50 }71)’ as

gt(f:"h) = V(A E U A )

Af
Qym

) ..ﬁ(_l)m{VLO(U‘AJ;},A:&)

m
m=1{ A!

m+ 1

+ Z ("UnVn(U:A)’?hAlé)}z Vid & U Amy)

n=

M =
+ Y (=02 Y () UA L AL
m=10

1 nem2
67)
and
gsl(é;’?l) = 1=V (UA g, A8
Mo '
+ 3 NG Vi (U1 A1, 4,8, (68)
1

m=90

Here again property {44) has been used for the first
two terms.

To verify equation (67) one has first to note that
the integral term in equation (51) can be written as

A, f F@)V oA (E—w), U Ay, ] du

= A, L FL)V o lUiA i, A(C—wldu (69)
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since the ¥V, , function is symmetric with respect to
the interchange of the position of its arguments (see
equation (45)), and then be regarded as a convolution
for the Laplace transform

Z
gé—»s{[\l J; ‘F!(u)VLD[UIAlr’hA\(é"u)]da}

exo | — UAnys
P s+A,
s+ A, ’

When F,(¢) is substituted by its approximation given
by equation (65) one needs the inversion of

exp [ = Lrhatis
P s+A,

= A F(5) (70)

MRy M
in order to calculate the integral term (69). Since, for
Re (s} > A,

1 -1y 1 ma!
S s+A) (Ty [E?AT e (_ “)]

=y & A,

T AT ,,3,3“(* T)n ™
term by term inversion s — ¢ of (71), recalling that
equations (35) and (36) hold, will yield the result as
given by equation (67), confirming thus relations {38)
and (47).

The Laplace transform of the convolution term in
equation (62), using equation (43), is

4
-?g-ﬂ{/\l J; Fi@)VaolA (& —u), UlAlﬂlld“}

- U A,
= F;(S)[CXP (‘" Tflﬁ) ‘“exP(“U;Aﬁ!)jl
73)

so that, for F,(&) approximated as in equation (65), the
straightforward inversion of

VA,
Z A,..+,[ (—TA’”) —exp(-U,Ama}/

(/A (74)
confirms the result given by equation (68).

In a similar way it can be shown that the approxi-
mations for fluid and solid temperature fields 0,({,1,)
and 8,,{{,7,) given by equations (58) and (59), respec-
tively, with F,({) of the form given by equation (66), are

U

me=Q

A m+ 1
oo (G, Ae)+ S

(72(6,"2) = -

UIAI Al -
xV,,(‘ﬂ;"Im )] ,.Z: (=0 (A /o')”‘
i Lo (Ud A
x”zg‘”(—l) V"(m-»—ﬂa qz,7c) (7%)

and

~ M asm U1A1 A1
O(0,m) = »?;:e e Vi1 (‘Bg‘nz,7C)-

(76)

So far it has been demonstrated that the temperature
fields in either period of the regenerator operation can
be obtained in a closed form if the matrix temperature
distributions at the start of each period are of the arbi-
trary polynomial order M in the spatial coordinate.
However, the main advantage of using equations (65)
and (66) as the trial solutions, is in evaluating the regen-
erator effectiveness. Namely, from various equivalent
possibilities to find & from a known solution, as discussed
above, formula (34) is the most suitable and can be
rewritten, upon using equations (61) and (62), as

a—if [0,1(E 1) = 0,5(E, 1)) dé

1| ¢
=ff,j; [F,(1-8—F (O] d¢

1 1
- o] [roa-[roe] o
1 0 0

Then, with the trial solution of the form of equations
(65) and (66), the effectiveness is given by

1 M
FTULE D)

(78)
and the problem is just to determine the coefficients
a, and a,, form=0,1,2,..., M. For any fixed M
one needs 2(M + 1) equations for M + 1 unknown a,,,
and for M+ 1 unknown a,,, coefficients. These equa-
tions are derived in the next section using the Galerkin
method and it is shown that the elements of the matrix
of a set of 2(M+1) linear algebraic equations are
obtainable explicitly in terms of regenerator par-
ameters Ay, U/,, o and f.

THE GALERKIN METHOD

Introducing the trial solutions F (&) and F,({) into
the integral equations (63} and (64), one finds the
residuals

#,(8) = Li{F (9, F2(8)} (79
and

RAD = ﬂ—z{ﬁ:x(@, F2(5)} (80)
in0 < ¢, € € 1. With the trial solutions of the form of

equations (65) and (66) the Galerkin method can be
applied to the integral equations (63) and (64) as
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J%(é)é dé=0, £=0,1,2,....M (81])

and

A
J\ 2(g)€ dC 0, k=0,1,2,....M (82
which yields 2(M+1) algebraic equations for the
determination of the expansion coefficients a,, and
a,, for each m. Since the trial solutions, equations
{65) and (66), when introduced into integral equations
(63) and (64), give the residuals of the form

M 1Yy M -
2= 3 e L Y Sy OALA
VL UALAD (83)
and
M ]___Cm
-fa (1-0)
M azm UAI- Al
Loy '“( o C) @9

respectively, the resulting set of algebraic equations
(81) and (82) can be written as

M
Z [_Amk(HI’Al)alm+Bmk‘22m} =

G
m=0
k=0,12,....M (85)
M
Z [Boxt 1 =~ A (T3, A )] = 0,
m=0
k=0,1,2,....,.M (86)
where
l i ék
Amk(njsAj)E/_\;J. m+1( o /5) dé
\j
-y vy AL, AN, j=1,2 (87)
...i;{) k=0 rems 2 T AA s J= 14
i .
=X X _ 1
Bu= | i oY = ks
i ffk
C = j (v, A, é)] dé‘
_ 1 L= Vi, A)
~(k+1)!",§0 (k—i)t A7) ®9)

Equations (87) and (89) are the consequences of
property (49). Note that C, = By, — A4, and that
coefficients B, are independent of regenerator par-
ameters and are exactly the same in both equations
{(85) and (86). The functional form of the A4,,; depen-
dence of the regenerator parameters is the same as well,
but in equation (83) 4, depend on IT, = U,A, and
A, while in equation (86) A, depend onI1, = U,A /fo
and A, = A, /o.

B. 8. BacLic and G. D. DRAGUTINOVIC

Once the expansion coefficients a,,. a,, (m=
0,1,2,..., M) are determined, for specified A, U, o
and f (or A, IT), A, and I1,), from equations (85)
and (86), the temperature fields of either fluid or regen-
erator matrix at any position and any time instance
are readily obtainable from equations (67), (68}, (75)
and (76). However, the most straightforward result to
be obtained from known values of 2,,, and a,,, is the
regenerator effectiveness given by equation (78).

When very precise results are required one must use
higher approximations by increasing the order M of
the trial polynomials. This will confirm the known
feature of the Galerkin method: in the limit M -
it forces the residuals to be zero by making them (see
equations (81) and (82)) orthogonal to each linearly
independent member of the complete set of trial func-
tions E/kY (kK =0,1.2,..., M).

For design purposes one is primarily interested
in reliable results for regenerator effectiveness and
has to be assured that by increasing M (i.e. reducing
the values of the residuals in the regenerator space
0 < ¢ < 1), the results for ¢ correspond to an exact
solution to certain decimal places. We now illustrate
the convergence of this method by carrying out the
computations to higher order terms.

The coefficients a,,, and a,, (m=0,1,2,..., M)
obtained from the algebraic set of equations (85) and
(86), as well as the corresponding values of regen-
erator effectiveness are presented in Table 1 for values
of M up to 5in the case of, arbitrarily chosen, reduced
lengths A, = 15.5, A, = 18, reduced period T1, = 16
and larger reduced length to period ratio (A/IT), =
1.2. Tt is evident from Table | that the regenerator
effectiveness is at the practically correct value (three
significant figures) already at M = 2, and that the
corresponding effectiveness results for M =4 and 5
coincide for six decimal places. The latter fact is true
for the great majority of different combinations of
four regenerator parameter values, and not just for
the example presented in Table 1.

The convergence towards the exact solution can
be seen also by following the development of matrix
temperature distributions at the end of respective per-
iods (IF (&) and F,({) given by equations (65) and (66),
respectively) with increasing the order (M) of the trial
solution. This is presented in Fig 2 .for the same
values of parameters as in Table 1. Obviously constant
matrix temperatures (M = 0) and linear distributions
(M = 1) are very rough and unrealistic approxi-
mations. However, starting already with the second-
order polynomials (M = 2), correct shapes of the tem-
perature distributions are established, and they are
almost indistinguishable from the plots of the dis-
tributions for M = 3, 4 and 5. Table 2 provides the
numerical values of F, and F, for M =3, 4 and §,
wherefrom it becomes clear that the solution has prac-
tically converged to the exact one at M = 5.

We end this section by concluding that the Galerkin
method provides practically accurate results for the
regenerator effectiveness with the second-order
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F1G. 2. Matrix temperature distributions F,(£) and F,({) for various orders (M) of the trial solution: (a)
M=0,1,2and 3; (b)) M =4and 5(A, = 15.5, U, = 0.8333, § = 0.9375, ¢ = 0.8611).

Table 1. Convergence of ¢ given by equation (78) by increasing the order (M) of the trial polynomials for A, = 15.5, A, = 18,
(A/M); =1.2and I, = 16 (U, = 0.8333, A, = 15.5, B = 0.9375, o = 0.8611)

Expansion coefficients from equations (85) and (86)

M Ay (m+ 1) Ao/ (4 1)} &= (AT EY, (@2, —ay,)/(m+ 1)
0 @10 = 0.1994847655E 00 30 = 0.8464496251E +00 0.776358
1 @10 = 0.4774757624E+00 30 = 0.6495968994E +00 0.839393
a1,/2! = —0.3004407361E + 00 2,,/2! = 0.2269321763E + 00
2 1o = 0.6123050451E +00 30 = 0.5296996142E +00 0.847277
/2! = ~0.7089718580E + 00 a3,/2! = 0.6069868991E + 00
a1,/3! = 0.2714202073E 400 5,/3! = —0.2558692859E +00
3 10 = 0.6038717628E 400 30 = 0.5172719219E + 00 0.847233
a;,/2! = —0.6536371708E + 00 a;,/21 = 0.685076554SE + 00
a,,/3! = 0.1770038495E + 00 a5f3 = —0.3877162736E +00
ap,/4 = 0.4766383761E —01 a,,/4! = 0.6629797653E —01
4 ay0 = 0.5845412612E +00 39 = 0.5321021858E+00 0.847311
a;,/2! = —0.4595721960E + 00 3,/2! = 0.5390921266E + 00
a15/3! = —0.4069373320E +00 ;53! = 0.5029928890E — 01
a1,/4! = 0.7302788247E + 00 @,3/8! = —0.4455804284E +00
ay,/5! = —0.2734096322E + 00 @54/5! = 0.2050801859E + 00
5 a3 = 0.5850397944E + 00 @30 = 0.5351881492E 400 0.847311

a1,/2! = —0.4669225216E+00
ay,/3! = ~0.3711900982E + 00
a,,/4! = 0.6554213580E +00

a14/5! = —0.2031960408E + 00
a,5/6! = —0.2424905086E — 01

a3,/2! = 0.4929495210E -+ 00
a3/3! = 0.2655371695E +00
ay/4 = —0.8760081957E +00
a34/5! = 0.5924537939E + 00
ay5/6! = —0.1291244293E 4 00

(M =2), and very precise results with fifth-order

(M = 5) trial solution.

presented,

results obtained on the Amdahl V/7 computer are

The counterflow regenerator effectiveness has

RESULTS

The Galerkin method based computer software has
been designed for an arbitrary combination of four
regenerator parameters and successfully utilized on
a variety of computing facilities. Here some sample

been simulated with M = 5 for the following range
of parameters 1 < A, < 1000, 0 < I, < 2000, 0.2 <
A, <2000 and O0<TI,<10000 which covers a
wide range of unbalance and asymmetry factors. To
cover this range in just 25 tables (or charts) ¢ is pre-
sented as a function of U,&[0,2} using A, as a par-
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Table 2. Convergence of [, and [, given by equations (65) and (66), respectively, by increasing the order (M) of the trial
polynomials for the same values of parameters as in Table 1

F, F,

E=1-~¢ M= M =4 M=35 M=3 M=4 M=35
0.00 0.6039 0.5845 0.5850 0.9895 1.0043 1.0012
0.05 0.5399 0.5359 0.5359 0.9965 0.9996 0.9998
0.10 0.4786 0.4832 0.4830 1.0016 0.9981 0.9994
0.15 0.4204 0.4284 0.4282 1.0044 0.9983 0.9994
0.20 0.3652 0.3731 0.3730 1.0048 0.9987 0.9992
0.25 0.3132 0.3188 0.3188 1.0025 0.9981 0.9979
0.30 0.2646 0.2667 0.2669 0.9974 0.9956 0.9948
0.35 0.2195 0.2180 0.2182 (.9893 0.9902 (.9892
0.40 0.1781 0.1735 0.1736 0.9779 0.9812 0.9803
0.45 0.1405 0.1338 0.1339 0.9631 0.9680 0.9675
0.50 0.1068 0.0995 0.0994 0.9447 0.9502 0.9502
0.55 0.0772 0.0706 0.0705 0.9225 0.9275 0.9280
0.60 0.0519 0.0474 0.0471 0.8962 0.8997 0.9006
0.65 0.0309 0.0295 0.0293 0.8657 0.8669 0.8680
0.70 0.0144 0.0167 0.0165 0.8308 0.8293 0.8302
0.75 0.0025 0.0083 0.0083 0.7913 0.7872 0.7875
0.80 —0.0045 0.0036 0.0038 0.7469 0.7412 0.7407
0.85 —0.0066 0.0016 0.0019 0.6975 0.6917 0.6906
0.90 ~0.0036 0.0010 0.0013 0.6429 0.6397 0.6385
0.95 0.0047 0.0006 0.0006 0.5829 0.5862 0.5861
1.00 0.0183 ~0.0013 —0.0021 0.5173 0.5321 0.5352

B = U/Uz
1.0 0.8 0.6 G.4 0.2
1.0 | o=1 0=5/4 | 0=5/3 | 0=5/2 | o= 5
0.8 | g=4/5 | o= o=4/3 | 0=4/2 | o= 4 kS
&
@ | 0.6 0:3/5 | 0=3/8 | 0=1 | 0=3/2 | 0=3 &
T
0.4 | o=2/5 | 0=2/4 0=2/3 | o=1 g= 2 @
0.2 | g=1/5 | 0=1/4 | 0=1/3 | 0=1/2 | 0= 1 \<
&
&
BALANCED UNBALANCED 7\ /él
£
&
<
3
&
&
N
&

FiG. 3. Survey of parameter values that are covered in 25 regenerator effectiveness charts.

ameter for fixed 8 and 5. To provide an accurate
linear interpolation within a table as well as among
the tables, the following twenty A, values have been
selected: 1, 1.5,2,2.5,3,3.5,4,5,6,7,8.5,10, 12, 15,
18, 23, 30, 50, 100 and 1000, and each effectiveness
table {or chart) was for one of five values of f and of
from Fig. 3. A typically generated effectiveness table
is presented in Table 3, and four typical effectiveness
charts are presented in Figs. 4-7. The complete set of
charts will be published elsewhere [24].

We note that all five figures of effectiveness values
in Table 3 are accurate. To the best of the authors’

knowledge there is no method reported that gives as
accurate results in such a wide range of parameters.
Also it is worth noting that an average CPU time for
generating a table like the one presented in Table 3
was 90 s on the Amdahl V/7 computer.

The results presented in Figs. 4-7 correspond to the
combination of parameters from the four corners of
Fig. 3, but arranged in a sequence of increasing favor-
ableness of counterflow regenerator performance. The
lowest effectiveness values are those in Fig. 4 for a
symmetric (¢ = 1) and balanced (f = 1) regenerator.
The balanced (8 = 1) and highly asymmetric (o6 = 0.2)
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regenerator is more favorable for all A; values as
can be seen from Fig. 5.

Figure 6 presents the results for a highly unbalanced
(# = 0.2) and highly asymmetric (¢ = 5) regenerator.
Except for low values of A, (A, < 2.5) this is a much
better regenerator performance than the case pre-
sented in Fig. 5.

Among the four cases presented the highest effec-
tiveness values for all A, values are attained at highly
unbalanced (f = 0.2) but symmetric (¢ = 1) oper-
ation of the regenerator as shown in Fig. 7.

CONCLUDING REMARKS

The present method provides a very simple and
straightforward solution to the unbalanced and asym-

FiG. 6. Counterflow regenerator effectiveness for § = 0.2 and
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F1G. 7. Counterflow regenerator effectiveness for § = 0.2 and
o=1.

metric counterflow regenerator problem for any arbi-
trary combination of the four regenerator parameters.
Compared to various other approximate methods the
present solution has no computational restriction
associated with the large values of IT and A. The
convergence of the solution is found to be very fast
and the computation time very short which made it
possible to investigate regenerator effectiveness in an
extremely wide range of parameters and readily to
generate appropriate tabulations and effectiveness
charts. Sample results of the analysis are presented in
Table 3 and Figs. 4-7. The use of the Galerkin method
has proved to be very powerful for solving the set of
integral equations associated with the general coun-
terflow regenerator problem. Selection of alternative
sets of four regenerator parameters (U,, A,, f and o)
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made it possible to provide a physically meaningful
interpretation of regenerator performances.

Acknowledgements—This work was completed during the
1983-84 academic year at the University of Leeds whose
compuiational facilities are gratefully acknowledged. The
first author is indebted to the Science and Engineering
Research Council for funding as a Senior Visiting Fellow at
the University of Leeds during his leave from the University

of

Novi Sad, Yugoslavia. The authors are particularly grate-

ful to Professor P. J. Heggs, Chemical Engineering Depart-
ment, Bradford University, who exhaustively reviewed this
manuscript and provided many valuable suggestions.

REFERENCES

. H. Hausen, Survey of the theories of heat transfer in
regenerators. Invited lecture at 1972 Int. Seminar Recent
Developments in Heat Exchangers, Trogir, Yugoslavia,
30 August—6 September (1972).

. W. Nusselt, Die Theorie des Winderhitzers, Z. Ver. Dt.
Ing. 71, 85-91 (1927).

. J. E. Coppage and A. L. London, The periodic flow
regenerator—a summary of design theory, Trans. ASME
75, 779-787 (1953).

. H. Hausen, Heat Transfer in Counterflow, Parallel Flow
and Cross Flow (Translated from the German by M. S.
Sayer ; translation edited by A. J. Wilimott), 2nd Edn.
McGraw-Hill, New York (1983).

. F. W. Schmidt and A. J. Willmott, Thermal Energy
Storage and Regeneration. McGraw-Hill, New York
(1981).

. P. Razelos, History and advancement of regenerator
thermal design theory. In Compact Heat Exchangers—
History, Technological Advancement and Mechanical
Design Problems (Edited by R. K. Shah, C. F. McDonald
and C. P. Howard), HTD-Vol. 10, Book No. G00183,
pp. 91-100. ASME, New York (1980).

. A, Hill and A. J. Willmott, A robust method for regen-
erative heat exchanger calculations, Int. J. Heat Mass
Transfer 30, 241-249 (1987).

. P. Razelos, An analytic solution to the electric analog

simulation of regenerative heat exchanger with time-
varying fluid inlet temperatures, Wirme- und Stoffubertr.
12, 59-71 (1979).

. A, Hill and A. J. Willmott, Accurate and rapid thermal

regenerator calculations, Jnt. J. Heat Mass Transfer 32,
465-476 (1989).

. C. E. lliffe, Thermal analysis of contra-flow regenerative

heat exchanger, J. Instn Mech. Engrs 159, 363-372
(1948).

11.

12.

13.

14.

15.

16.

19.

20.

21.

22.

23.

24.

497

A. N. Nahavandi and A. S. Weinstein, A solution to the
periodic flow regenerative heat exchanger problem, 4Appl.
Scient. Res. A10, 335-348 (1961).

R. K. Shah, Thermal design theory for regenerators. In
Heat Exchangers : Thermal-Hydraulic Fundamentals and
Design (Edited by S. Kakac, A. E. Bergles and F. May-
inger), pp. 721-763. Hemisphere/McGraw-Hill, Wash-
ington, DC (1981).

P. J. Heggs, Experimental techniques and correlations
for heat exchanger surfaces: regenerators. In Low
Reynolds Number Flow Heat Exchangers (Edited by S.
Kakac, R. K. Shah and A. E. Bergles), pp. 369-394.
Hemisphere, Washington, DC (1983).

R. K. Shah, Compact heat exchangers. In Handbook of
Heat Transfer Applications (Edited by W. M. Rohsenow,
J. P. Hartnett and E. N. Ganic), Part 3 of Chap. 4.
McGraw-Hill, New York (1985).

B. S. Baclic, The application of the Galerkin method to
the solution of the symmetric and balanced counterflow
regenerator problem, J. Heat Transfer 107, 214-221
(1985).

G. Dragutinovic, Approximate analytical solutions of
the unbalanced and asymmetric counterflow regenerator
model via the Galerkin method (in Serbo-Croatian),
M.Sc. Thesis, Department of Mechanical Engineering,
University of Belgrade (1983).

. F. E. Romie and B. S. Baclic, Methods for rapid cal-

culation of the operation of asymmetric counterflow
regenerator, J. Heat Transfer 110, 785-788 (1988).

. B. S. Baclic, P. J. Heggs and G. D. Dragutinovic, Pre-

diction of the effectiveness of unbalanced-asymmetric
counterflow regenerators, Publs Fac. Tech. Sci. Univ.
Novi Sad 15, 1-15 (1984).

B. S. Baclic and P. J. Heggs, Unified regenerator theory
and re-examination of the unidirectional regenerator
performances. In Advances in Heat Transfer (Edited by
J. P. Hartnett and T. F. Irvine, Jr.), Vol. 20, pp. 133~
179. Academic Press, San Diego (1990).

J. E. Johnson, Regenerator heat exchangers for gas-
turbines, R.A.E. Report Aero. 2266, S.D. 27, pp. 1-72
(1948).

B. S. Baclic, Misinterpretations of the diabatic re-
generator performances, Int. J. Heat Mass Transfer 31,
1605-1611 (1988).

E. P. Serov and B. P. Korol'kov, Dinamika paro-
generatorov (Dynamics of Steam Generators). Energiya,
Moscow (1972).

F. E. Romie, Two functions used in the analysis of
crossflow exchangers, regenerators and related equip-
ment, J. Heat Transfer 109, 518-521 (1987).

B. S. Baclic, P. J. Heggs and G. D. Dragutinovic, Coun-
terflow regenerator effectiveness charts (to be published).

PROBLEME DU REGENERATEUR THERMIQUE A CONTRE-COURANT ET BILAN
ASYMETRIQUE: SOLUTION PAR LA METHODE DE GALERKIN ET SIGNIFICATION DES
PARAMETRES ADIMENSIONNELS

Résumé—Le probléme du régénérateur thermique 4 contre-courant et bilan asymétrique, décrit par les
ideéalisations classiques est résolu par la méthode de Galerkin. Les équations intégrales relatives aux
conditions a I'équilibre cyclique de la matrice du régénérateur sont transformées et un systéme d’équations
algébriques. Ceci permet la détermination des coefficients de développement associés 4 la représentation
des distributions de température de matrice au départ de chaque période du cycle sous la forme d’une série
puissance en fonction de la variable d’espace. La méthode est aisée et d’application directe et elle conduit
a des expressions analytiques explicites des coefficients du développement pour une combinaison quel-
conque des quatre paramétres sans dimension du régénérateur. Un accord excellent est trouvé entre les
résultats de cette solution nouvelle et ceux déja connus par différentes solutions numériques. On discute la
convergence entre les calculs numériques exacts. La solution est utilisée pour prédire I'efficacité dans le cas
d’un large domaine pour les quatre paramétres sans dimension. On présente les raisons thermodynamiques,
d’une fagon alternative mais rationnelle et chargée de sens, de définir les quatre paramétres du régénérateur.
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BERECHNUNG VON GEGENSTROM-REGENERATOREN MIT HILFE DES GALERKIN-
VERFAHRENS UND DIE BEDEUTUNG DIMENSIONSLOSER PARAMETER

Zusammenfassung—Der thermische Gegenstrom-Regenerator wird unter Verwendung der klassischen
Idealisierung beschrieben und mittels der Galerkin-Methode berechnet. Die Integralgleichungen zur
Beschreibung der zyklisch wiederkehrenden Vorgénge in der Regenerator-Matrix werden in einen
Satz algebraischer Gleichungen transformiert. Dies erlaubt die Bestimmung der Koeflizienten bei der
Beschreibung der Temperaturverteilung in der Matrix zu Beginn eines Zyklus in Form einer Potenzreihe in
Abhidngigkeit von der Raumvariablen. Das Verfahren ist leicht und in einem Zuge anwendbar und
fiilhrt zu expliziten analytischen Ausdriicken fiir die Koeffizienten der Reihenentwicklung bei beliebiger
Kombination der vier dimensionslosen Parameter des Regenerators. Die Ubereinstimmung der Ergebnisse
aus dieser neuen Ldsung mit denjenigen, welche in der Literatur aufgrund unterschiedlicher numerischer
Berechnungen angegeben werden, ist hervorragend. Die Anndherung—bei Berechnungen unter Ver-
wendung von Ausdriicken héherer Ordnung—an die exakte Losung wird diskutiert. Die Losung
wird fiir Wirkungsgradberechnungen in einem weiten Bereich der vier dimensionslosen Parameter ver-
wendet. Es werden thermodynamische Griinde fiir eine abgewandelte, jedoch sinnvolle Art der Definition
der vier Regenerator-Parameter vorgestellt.

3AJAYA ACUMMETPHYHO-HECBAJIAHCUPOBAHHOI'O ITPOTHBOTOYHOI'O
TEIUIOBOI'O PET'EHEPATOPA: PEMIEHUE METOAOM I'AJTEPKHHA U 3HAYEHHUE
BE3PASMEPHBIX [TAPAMETPOB

Amporamms—Mertonom lanepkuHa pelaercs 3aJaya acCHMMETPHYHO-Hec6aIaHCHPOBAHHOTO NPOTHBO-
TOYHOTO TENAOBOTO pereHepaTopa, ONMCHIBAEMAas KJIACCHYCCKHMM HacanH3aupsiMH. MHTerpaibnbie
ypaBHEHHS, OTHOCALINECS K YC/IOBHAM OGpalleHHs PH IMUTHHAPHYECKOM PaBHOBECHH MATDHIB! PereHe-
paTopa, npeo6pa3yloTcs B CHCTEMY anreOpauyeckux ypaBHEHHH. DTO NO3BOJSET ONPEaeTHTh Kodidu-
IMEHTHI Pa3IOKEHHs MOCPEACTBOM MPEACTABICHAS MAaTpHUB pacnpenesicHHil TeMmepaTtyp B Hadasje
KaXIOTO NlepHoa UHKIA B BUIE CTENEHHOIo PANA YePe3 MPOCTPAHCTBEHHYIO nepeMenHyo. [peioxkes-
HBI METOI ABJACTCS MPOCTHIM M JIErKO MPHMEHHMBIM H MO3BOJISCT NOJYYHTh ABHBIE AHAIHTHYECKHE
BLIDaXCHHA 118 KO3pHUMEHTA Pa3/IOKEHHS NpH JF0G0H KOMGHHAIMH YeThipex Ge3pa3MepHBIX mapa-
METpPOB aCHMMETPHYHO-HecGaaHCHpoBaHHOrO pereneparopa. IlosydeHo xopoilee CoBnaZeHue pe3yib-
TATOB NMpPEICTaB/IEHHOrO HOBOI'O PEllieHHS M PE3yJbTATOB PAa3IHYHBEIX YHC/ICHBIX PElICHHH, HMEIOIIMXCS
B JHTepaType. O6cyxnaeTcs npubIMKeHre pe3yIbTaTOB K TOYHRIM NPH PacyeTax wieHoB 6oee BHICO-
koro nopaaka. IoyuenHoe pellleHre HCOB3YETCH UIA ONpPENcaeHHs 3GGEKTHBHOCTH WIHPOKOTO ana-
NMa3’oHa M3MEHCHMH deThipex Oe3pasMepHbIX mapameTpoB. [IpeAcTaBieHO TEPMOIMHAMMYECKOE
060CHOBaHHE aJbTEPHATHBHOTO, HO DAaUMOHAILHOTO H IelecooGpa3sHoro crocoba onpeaeseHus
4eTHIPEX NapaMETPOB pereHepaTopa.



